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Abstract

We give a thorough introduction to the Steklov problem on �nite weighted graphs. On

�nite graphs, this problem reduces to studying the eigenvalues of a particular matrix

de�ned on a subset of the vertices of the graph. We consider two versions of the Steklov

problem, one of which is a ’normalized’ version of the other. We prove two novel results

that relate the eigenvalues of the Steklov problem to the properties of the underlying

graph. The �rst result consists of upper bounds on the normalized and non-normalized

smallest nonzero Steklov eigenvalue, which hold when the underlying graph is planar.

The second result is a lower bound on the non-normalized smallest nonzero Steklov

eigenvalue which depends on the edge connectivity of the underlying graph.
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Chapter 1

Introduction

This thesis concerns bounds on the eigenvalues of a discrete version of the classical

Steklov problem, originally posed by V.I. Steklov in the 19th century [Kuz+14]. The

classical Steklov problem with spectral parameter 𝜎 is posed on a Riemannian manifold

𝑀 with boundary 𝜕𝑀 as

Δ𝑢 = 0, in𝑀,

𝜕𝑢

𝜕𝑛
= 𝜎𝑢, on 𝜕𝑀.

(1.1)

Here, Δ denotes the Laplace-Beltrami operator and 𝑛 denotes the outward-facing unit

normal on 𝜕𝑀 . It can be shown that for manifolds 𝑀 that ful�l reasonable regularity

assumptions, the spectrum of the Steklov problem is discrete and non-negative with

eigenvalues 0 = 𝜎0 < 𝜎1 ≤ 𝜎2 ≤ . . ., with all eigenvalue multiplicities �nite. An

alternative perspective on the Steklov problem is to view its eigenvalues as the spectrum

of the Dirichlet-to-Neumann operator, usually denoted Λ, de�ned between spaces of

’su�ciently nice’ functions 𝑓 on 𝜕𝑀 . Formally, Λ is de�ned as

Λ(𝑓 ) = 𝜕𝑓

𝜕𝑛
,

where 𝑓 denotes the harmonic extension of 𝑓 , i.e. the function that agrees with 𝑓 on 𝜕𝑀

and satis�es Δ𝑓 = 0 in𝑀 .

As was stated, we will actually be concerned with a discrete version of the Steklov

problem and Dirichlet-to-Neumann operator which is instead posed on a �nite weighted

graph 𝐺 with vertex set 𝑉 = {1, 2, . . . , 𝑛}, edge set 𝐸, and weights𝑤𝑖 𝑗 on the edges (𝑖, 𝑗)
between vertices 𝑖 and 𝑗 in 𝐸. This discrete Steklov problem concerns functions de�ned

on 𝑉 . There is a matrix 𝐿 (in fact, several related matrices), called the graph Laplacian,
which can be viewed as a discrete analogue of the Laplace operator. The action of 𝐿 on a

function 𝑓 : 𝑉 → R is

(𝐿𝑓 ) (𝑖) =
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸
𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗)) .

One can designate a subset of the vertices of𝐺 as the boundary 𝐵 of the graph𝐺 , similarly

to the way 𝜕𝑀 is the boundary of 𝑀 . Analogously to the continuous case, for a given

function 𝑓 : 𝐵 → R there is a unique function 𝑢 𝑓 : 𝑉 → R de�ned on all of 𝑉 such that

(𝐿𝑢 𝑓 ) (𝑖) = 0, for 𝑖 in 𝑉 \ 𝐵,
𝑢 𝑓 (𝑖) = 𝑓 (𝑖), for 𝑖 on 𝐵,

(1.2)
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CHAPTER 1. INTRODUCTION

called the harmonic extension of 𝑓 . The discrete version of the Dirichlet-to-Neumann

(DtN) operator is in turn

Λ𝐿 : 𝑓 ↦→ (𝐿𝑢 𝑓 ) |𝐵,
where |𝐵 denotes restriction to 𝐵, and the Steklov eigenvalue problem on𝐺 with spectral

parameter 𝜎 is Λ𝐿 𝑓 = 𝜎 𝑓 , for nontrivial 𝑓 . Sometimes, one instead poses the problem (1.2)

using a ’normalized’ version of the Laplacian 𝐿, which we designate as L. The matrix L
acts on functions 𝑓 de�ned on 𝑉 as

L 𝑓 (𝑖) = 1∑
𝑗 :(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗

∑︁
𝑗 :(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗)) .

One de�nes the normalized form of the DtN operator as

ΛL : 𝑓 ↦→ (L𝑢 𝑓 ) |𝐵

with corresponding Steklov problem ΛL 𝑓 = 𝜎 𝑓 . The eigenvalues 𝜎 of the DtN operator

(normalized or not) are called Steklov eigenvalues. Analogously to their continuous

counterpart, one can show that the spectra of Λ𝐿 and ΛL are both real and non-negative.

Especially the map Λ𝐿 has a natural physical interpretation in terms of electrical networks

(modelled asweighted graphs), where knowledge ofΛ𝐿 corresponds tomeasuring currents

in the network at the vertices in𝐵, as wewill see in Section 2.4.3. Therefore, understanding

the properties of Λ𝐿 is important in the context of discrete versions of for instance the

Calderón problem, where one investigates to which extent it is possible to reconstruct

the whole eletrical network (i.e. its Laplacian matrix) from measuring currents at the

boundary. Extensive work on the Calderón problem on graphs has been done by e.g.

Curtis, Ingerman, and Morrow [CIM98], Kenyon [Ken11], Kenyon and Wilson [KW17],

Colin de Verdière [Col94] and Colin de Verdière, Gitler, and Vertigan [CGV96].

For the Steklov problem on manifolds, an extensive amount of work has been done

relating the geometry of the manifold𝑀 to especially the smallest nonzero eigenvalue,

which we denote 𝜎1, of the Steklov problem on𝑀 . The interested reader is referred to the

article [GP17] by Girouard and Polterovich for an in-depth survey of recent results. The

discrete Steklov problem seems to be a more recent area of study, but nonetheless some

results have been established. In a 2017 paper, Hua, Huang and Wang [HHW17] proved

multiple Cheeger-type or isoperimetric bounds for 𝜎1. Perrin [Per19; Per20] found lower

bounds for 𝜎1 that depend on the number of boundary vertices and the longest path of

minimal length between two boundary vertices, as well as upper bounds for 𝜎1 on graphs

that are the Cayley graph of a group of polynomial growth. There also exist results that

relate the continuous case to the discrete case; one example is the paper [CGR18] by

Colbois, Girouard, and Raveendran. Therefore, results in the discrete case might in fact

also in�uence the continuous case and vice versa.

In the �rst part of this thesis, we give the reader a thorough introduction to various

aspects of the DtN maps on graphs and hopefully provide some intuition into their

physical signi�cance. We also introduce the mathematical machinery needed to establish

bounds on Steklov eigenvalues by interpreting them as solutions to optimization problems

via the Courant-Fischer Theorem.

In the later parts, we prove two results that relate the Steklov eigenvalues to various

aspects of the underlying graph. Both results seem to be novel. The �rst result is Theorem

2



CHAPTER 1. INTRODUCTION

3.1, and consists of upper bounds on the normalized and non-normalizzed smallest non-

zero Steklov eigenvalues. Theorem 3.1 applies when the underlying graph is planar, and

its proof is in the vein of Spielman and Teng [ST07] and Plümer [Plü20]. The second

result is Theorem 4.5, which consists of a lower bound on the non-normalized smallest

non-zero Steklov eigenvalue, related to an invariant called the edge connectivity of the

graph. Its proof is partly in the vein of Theorem 2.3 in [Ber+17].

3



Chapter 2

Notation and preliminary concepts

In this chapter, we �x some notation that will be constantly used throughout the text

and de�ne the concepts and quantities of study.

2.1. Knowledge expected from the reader

A reader who has studied mathematics at the master’s level will probably not have any

major trouble following along in the arguments owing to a lack of background knowledge.

The most advanced material that appears are topological concepts familiar from any

introductory course in the subject. Experience in graph theory and (undergraduate level)

PDE:s will probably give more appreciation for the central objects of study, such as the

graph Laplacian, but is hardly required.

2.2. Graph terminology

All of the de�nitions in this section are standard and can be found in any book on graph

theory, for example [Die17]. Unless otherwise stated, graphs in this thesis are �nite,

undirected and are allowed to have at most one (weighted) edge between two given

vertices, but not loops. An (edge weighted) graph will be denoted 𝐺 = (𝑉 , 𝐸,𝑤) where
𝑉 denotes the set of vertices of 𝐺 , 𝐸 denotes its set of edges, and𝑤 : 𝐸 → (0,∞) is the
weight function on the edges. Often we will enumerate the 𝑛 vertices of 𝐺 by 1, 2, . . . , 𝑛,

in which case 𝑤𝑖 𝑗 is the weight of the edge connecting vertices 𝑖 and 𝑗 . Of course, we

identify𝑤𝑖 𝑗 with𝑤 𝑗𝑖 . We denote the edge itself connecting vertices 𝑖 and 𝑗 by 𝑒𝑖 𝑗 or (𝑖, 𝑗).
The cardinality of a subset 𝑆 of the edges or vertices of 𝐺 will be denoted |𝑆 |. The vertex
measure on a vertex 𝑖 ∈ 𝑉 is the quantity

𝑚(𝑖) B
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸
𝑤𝑖 𝑗 . (2.1)

The volume of a subset 𝑆 ⊂ 𝑉 is

Vol(𝑆) B
∑︁
𝑖∈𝑆

𝑚(𝑖). (2.2)

The neighborhood of a vertex 𝑖 is the set of vertices that are connected to 𝑖 by an edge.

A subgraph of a graph 𝐺 is a graph 𝐹 = (𝑉𝐹 , 𝐸𝐹 ) such that 𝑉𝐹 ⊂ 𝑉 and 𝐸𝐹 ⊂ 𝐸, with the

additional condition that all edges in 𝐸𝐹 connect vertices in 𝑉𝐹 . A path in𝐺 between two

vertices 𝑢, 𝑣 is a sequence of distinct edges (𝑢, 𝑣1), (𝑣1, 𝑣2), . . . , (𝑣𝑘−1, 𝑣𝑘), (𝑣𝑘 , 𝑣). Its path
length is the sum of the weights of the edges in the sequence. A graph is connected if

there is a path between any two vertices of𝐺 . A cycle is a path starting and ending at the

same vertex. A tree is a graph without cycles. A spanning tree of a connected graph𝐺 is a

4



CHAPTER 2. NOTATION AND PRELIMINARY CONCEPTS

connected subgraph of𝐺 which contains all vertices in𝑉 and is also a tree. We will often

be concerned with a distinguished subset of the vertices of𝐺 which we call the boundary
of 𝐺 and denote by 𝐵. The geometric �avor of the name boundary is oftentimes justi�ed,

as will hopefully be made clear later on.

2.3. Laplacians on graphs

We will consider two versions of the Laplacian matrix associated to a graph 𝐺 in this

thesis. If a graph 𝐺 = (𝑉 , 𝐸,𝑤) has 𝑛 vertices, one can identify a function 𝑓 : 𝑉 → R
with the vector in R𝑛 whose 𝑖:th entry is 𝑓 (𝑖), in which case one can view both of these

Laplacians as linear operators (i.e. matrices) on functions 𝑓 de�ned on 𝑉 .

2.3.1. The combinatorial Laplacian

De�nition 2.1 (Combinatorial Laplacian). Let 𝐺 be a graph with 𝑛 vertices, enumerated

as 1, 2, . . . , 𝑛. The combinatorial Laplacian 𝐿 of 𝐺 is the 𝑛 × 𝑛 matrix 𝐿 such that

𝐿𝑖𝑖 =
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸
𝑤𝑖 𝑗 , 𝐿𝑖 𝑗 = −𝑤𝑖 𝑗 , if 𝑖 ≠ 𝑗 . (2.3)

Note that 𝐿𝑖𝑖 equals𝑚(𝑖), where𝑚(𝑖) is as in (2.1). Directly from the de�nition, we

can note that the action of the combinatorial Laplacian on a function 𝑓 ∈ R𝑛 on the

vertices of the graph is

(𝐿𝑓 ) (𝑖) =
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸
𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗)) . (2.4)

The expression (2.4) perhaps gives a clearer picture than De�nition 2.1 of the fact that at

its core, applying the combinatorial Laplacian to a function 𝑓 ∈ R𝑛 amounts to measuring

to what extent the value of 𝑓 at the vertex 𝑖 di�ers from the (weighted) average value of

𝑓 in the neighborhood of 𝑖 . In particular, if 𝐿𝑓 (𝑖) = 0 at a vertex 𝑖 , then 𝑓 (𝑖) is a weighted
average of the function values at its neighboring vertices; we have

0 = (𝐿𝑓 ) (𝑖) =
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸
𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗)) =⇒

∑︁
𝑗 :(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 𝑓 (𝑖) =
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸
𝑤𝑖 𝑗 𝑓 ( 𝑗),

which in turn yields

𝑓 (𝑖) =
∑
𝑗 :(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 𝑓 ( 𝑗)∑
𝑗 :(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗

. (2.5)

This is a discrete analogue to a function on a manifold satisfying Laplace’s equation at a

point.

Instead of thinking of the combinatorial Laplacian as attached to a graph, one can

also view a combinatorial Laplacian as simply a member of a special class of matrices.

Fact 2.2. An 𝑛×𝑛 matrix 𝐿 is a combinatorial graph Laplacian if and only if the following
properties hold:

1. 𝐿 is symmetric.

2. The row and column sums of 𝐿 are both 0.

3. All o�-diagonal entries of 𝐿 are non-positive.

Proof. Use (2.3) to construct a bijection between 𝑛 × 𝑛-matrices satisfying properties 1,2,

and 3 and weighted graphs on 𝑛 vertices. �

5



CHAPTER 2. NOTATION AND PRELIMINARY CONCEPTS

2.3.2. The normalized Laplacian

De�nition 2.3. Let𝐺 = (𝑉 , 𝐸,𝑤) be a graph with vertices enumerated as 1, 2, . . . , 𝑛. Let 𝐿

be the combinatorial Laplacian of𝐺 , and let𝐷 be the diagonal matrix such that𝐷𝑖𝑖 =𝑚(𝑖),
where𝑚(𝑖) denotes the vertex measure of 𝑖 as in (2.1). The normalized Laplacian of 𝐺 is

the matrix L = 𝐷−1𝐿.

From the de�nition, we see that the action of L on a function 𝑓 on the vertices of𝐺

is

(L 𝑓 ) (𝑖) = 1

𝑚(𝑖)
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸
𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗)) . (2.6)

Since the calculation in Section 2.3.1 also applies to the normalized Laplacian, applying

the normalized Laplacian captures the same notion as the combinatorial Laplacian of

measuring to what extent 𝑓 (𝑖) di�ers from the weighted average of the function values

in the neighborhood of 𝑖 . However, the measure of to what extent this is the case is

’normalized’ by the factor 1/𝑚(𝑖).
This ’normalization’ phenomenon carries over to spectral properties as well. For

instance, it is classical that the eigenvalues of L are contained in the interval [0, 2],
regardless of the underlying graph, while the eigenvalues of the combinatorial Laplacian

can only be said to be contained in the graph-dependent interval [0, 2max𝑖∈𝑉 𝑚(𝑖)].
Partly for this reason, the eigenvalues of the normalized Laplacian turn out to often relate

more closely to other graph invariants than the combinatorial Laplacian when studying

general graphs. A lot of results in this direction come from the fact thatL is similar (in the

matrix sense of the word) to the symmetric normalized Laplacian L = 𝐷−1/2𝐿𝐷−1/2
, and

thus shares its eigenvalues. The symmetric normalized Laplacian L is more commonly

studied than L, but is for various reasons not an appropriate matrix to work with in the

context of this thesis. The reader is referred to the excellent text of F. K. Chung [Chu97]

for a detailed overview of the spectral properties of the symmetric normalized Laplacian

(and, by virtue of similarity, also of the normalized Laplacian). There will be times in this

thesis when the references for a result on the eigenvalues of the normalized Laplacian

refer to a text which deals with the symmetric normalized Laplacian; however, for the

reasons outlined above these results transfer over to the normalized Laplacian as well.

6



CHAPTER 2. NOTATION AND PRELIMINARY CONCEPTS

2.3.3. The Laplacian qadratic form

If 𝑓 ∈ R𝑛 is an arbitrary function de�ned on the vertices of𝐺 , the combinatorial Laplacian

gives rise to a quadratic form via the usual inner product (·, ·) in R𝑛:

(𝑓 , 𝐿𝑓 ) =
∑︁
𝑖

𝑓 (𝑖)


∑︁
𝑗 :(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))


=
∑︁
𝑖

𝑚(𝑖) 𝑓 (𝑖)2 − 2

∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 𝑓 (𝑖) 𝑓 ( 𝑗)

=
∑︁
𝑖


∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 𝑓 (𝑖)2
 − 2

∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 𝑓 (𝑖) 𝑓 ( 𝑗)

=
∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗
[
𝑓 (𝑖)2 + 𝑓 ( 𝑗)2

]
− 2

∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 𝑓 (𝑖) 𝑓 ( 𝑗)

=
∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2.

(2.7)

The quantity 𝐷 (𝑓 ) =
∑

(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2 is usually referred to as the Dirichlet
energy or Dirichlet sum of the graph, for a given function 𝑓 . It turns out that the Dirichlet

sum is related to the analogue of the Dirichlet problem on graphs, as we will see in

Section 2.4.1.

2.3.4. Some spectral properties of Laplacians

As was implied in the discussion regarding the normalized Laplacian in Section 2.3.2,

both the combinatorial and normalized Laplacians have real, non-negative eigenvalues.

They are also both singular; the all-ones vector 1 is an eigenvector of both 𝐿 and L
with eigenvalue 0. As a �rst example of the connection between connectivity and the

eigenvalues of the Laplacian, one can also show that it holds for both the normalized

and combinatorial Laplacian that the multiplicity of the eigenvalue 0 is the number of

connected components of 𝐺 (see Lemma 1.7 in [Chu97] for a proof in the normalized

case). In the case of a connected graph, we are therefore guaranteed that the second

smallest eigenvalue is nonzero for both Laplacians, and the second smallest eigenvalue

is therefore often referred to as the spectral gap of each respective Laplacian. As was

also mentioned in the discussion regarding the normalized Laplacian, the eigenvalues of

the normalized Laplacian are contained in the interval [0, 2] and the eigenvalues of the

combinatorial Laplacian are contained in the interval [0, 2max𝑖∈𝑉 𝑚(𝑖)].

2.3.5. Examples of spectral results

The goal of spectral graph theory is to study the eigenvalues and eigenvectors of the

di�erent types of Laplacians and other operators on graphs, and how these relate to

di�erent properties of the underlying graph, such as its connectivity; we saw some intro-

ductory examples in Section 2.3.4. In this section, we aim to show via a few examples

that a vast array of striking results in this direction, perhaps more exciting than those in

Section 2.3.4, exist. These results are often especially valuable in practical contexts, since

the eigenvalues of a graph Laplacian are easily computed algorithmically while deter-

mining certain invariants of graphs can often turn out to be computationally intractable

(NP-hard).

7
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The �rst example shows the potential of spectral methods in the context of combina-

torics on graphs.

Theorem 2.4 (Kirchho� Matrix-Tree Theorem). Let𝐺 be a connected graph on 𝑛 vertices
with edge weights all equal to 1. Let 𝐿 be the combinatorial Laplacian of 𝐺 , and denote its
eigenvalues by 𝜆0 = 0 < 𝜆1 ≤ . . . 𝜆𝑛−1. Let 𝑡 (𝐺) denote the number of spanning trees of 𝐺 .
Then ∏𝑛−1

𝑖=1 𝜆𝑖

𝑛
= 𝑡 (𝐺).

In the view of the author, this theorem is highly surprising and shows just how varied

the applications of Laplacian eigenvalues can be. For a proof of the Matrix-Tree Theorem,

we refer to Chapter 9 of [Sta18].

The second example is a theorem that is of great pratical importance, which needs a

few de�nitions. These de�nitions can all be found in Chapter 2 of [Chu97], along with

an extended discussion of the result to come.

De�nition 2.5. Let 𝐺 = (𝑉 , 𝐸,𝑤) be a graph (with unit weights on the vertices, for

simplicity) and 𝑆 ⊂ 𝑉 . The set 𝐸 (𝑆,𝑉 \ 𝑆) denotes the set of edges with one endpoint in

𝑆 and one endpoint in 𝑉 \ 𝑆 . The Cheeger constant of 𝑆 is the quantity

ℎ𝐺 (𝑆) =
|𝐸 (𝑆,𝑉 \ 𝑆) |

min(Vol(𝑆),Vol(𝑉 \ 𝑆)) ,

where Vol(𝑆) = ∑
𝑖∈𝑆𝑚(𝑖) as in (2.2) and Vol(𝑉 \ 𝑆) is de�ned analogously. The Cheeger

constant of 𝐺 is de�ned to be

ℎ𝐺 = min

𝑆
ℎ𝐺 (𝑆).

Remark 2.6. The edges in 𝐸 (𝑆,𝑉 \ 𝑆) are part of the measures of the vertices in both 𝑆

and 𝑉 \ 𝑆 , and therefore one sums implicitly over these edges in the expressions of both

Vol(𝑆) and Vol(𝑉 \ 𝑆). Hence it follows that ℎ𝐺 ≤ 1.

Intuitively, if the Cheeger constant is large, the graph is sparse, in that its number of

edges is roughly linear in the number of vertices, but also highly connected, in the sense

that there are no ’bottleneck’ sets that need few edges to be removed to be disconnected

from the rest of the graph. These properties are highly desirable in practice, for instance

when designing something like a power network. It turns out that one can e�ectively

bound the Cheeger constant of a graph via spectral methods, even though it is NP-hard

to compute it exactly in general (see [Kai04], Theorem 2).

The theorem below can be found in e.g. Section 2.2 of [Chu97].

Theorem 2.7 (Cheeger inequalities). Let 𝐺 = (𝑉 , 𝐸,𝑤) be a connected unit weighted
graph. Let 𝜆1 denote the smallest nonzero eigenvalue of the normalized Laplacian on 𝐺 .
Then

ℎ2
𝐺

2

≤ 𝜆1 ≤ 2ℎ𝐺 .

Graphs with ’large’ values of 𝜆1 therefore have a large value of ℎ𝐺 , and a large ℎ𝐺
implies at least a ’rather large’ value of 𝜆1. This makes 𝜆1 a highly relevant quantity to

study when looking for graphs with the desirable properties outlined above. Graphs with

’large’ 𝜆1 are one example of the notion of an expander graph, which seemingly appear in

8
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many disparate areas of mathematics such as number theory and theoretical computer

science. The interested reader is referred to the treatise [HLW06] on expander graphs by

Hoory, Linial and Wigderson, where the spectral properties of such graphs are covered

in detail.

2.4. The DtN map on graphs

In this section, we introduce the central objects of study in this thesis, which are two

related operators acting on the boundary 𝐵 of a graph 𝐺 . These operators are called the

combinatorial and normalized Dirichlet-to-Neumann (DtN) map, respectively. We also

aim to provide some intuition as to why the DtN maps are natural and interesting objects

to study.

2.4.1. Graph boundaries and the Dirichlet problem

Kenyon [Ken11] gives an excellent exposition of the relation between the Dirichlet

problem on graphs and the DtN map, which we follow. Classically, the Dirichlet problem
is formulated on a region 𝑈 in R𝑛 and asks for a continuous function that is twice

di�erentiable in the interior of𝑈 and takes prescribed values on the boundary of𝑈 . If one

also asks that this function satis�es the Laplace equation in 𝑈 , it becomes the following

problem:

Given 𝑓 taking values on the boundary of a region 𝑈 in R𝑛 , is there a unique
continuous function 𝑢 which is twice continuously di�erentiable in the interior
and continuous on the boundary, such that 𝑢 solves Laplace’s equation in the
interior of𝑈 and 𝑢 = 𝑓 on the boundary?

We will pose a discrete version of the Dirichlet problem on a connected weighted graph

𝐺 . To do this, we �rst introduce the discrete analogue of a function that satis�es Laplace’s

equation.

De�nition 2.8 (Harmonic extension). Let 𝐺 = (𝑉 , 𝐸,𝑤) be a weighted graph with 𝑛

vertices and combinatorial Laplacian 𝐿. A function 𝑓 : 𝑉 → R such that (𝐿𝑓 ) (𝑖) = 0 is

said to be harmonic at 𝑖 . If 𝑆 is a subset of 𝐵, a function 𝑢 is harmonic in 𝑆 if it is harmonic

for all 𝑖 in 𝑆 .

Let 𝐵 denote the boundary of 𝐺 . The discrete Dirichlet problem is the following: Fix

a function 𝑓 : 𝐵 → R. We ask for a function 𝑢 : 𝑉 → R which agrees with 𝑓 on 𝐵 and is

harmonic on 𝑉 \ 𝐵:
(𝐿𝑢) (𝑖) = 0, for 𝑖 in 𝑉 \ 𝐵,
𝑢 (𝑖) = 𝑓 (𝑖), for 𝑖 in 𝐵.

(2.8)

For �nite, connected graphs, the discrete Dirichlet problem turns out to always be uniquely

solvable. This follows from the discussion in Section 2.4.2, where an explicit expression

for the values of 𝑢 on 𝑉 \ 𝐵 is obtained following (2.12).

Since we will often refer to the function ful�lling the conditions in (2.8), we give it a

proper name.

De�nition 2.9 (Harmonic extension). Let 𝐺 be a graph with boundary 𝐵, and let 𝑓 :

𝐵 → R be a function on the boundary. The function 𝑢 𝑓 : 𝑉 → R that solves the discrete

Dirichlet problem (2.8) on 𝐺 with boundary conditions given by 𝑓 is called the harmonic
extension of 𝑓 on 𝐺 .

9
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The following are two classical facts of the harmonic extension which we will occa-

sionally use.

Lemma 2.10. Suppose we are in the situation of (2.8) and 𝑢 𝑓 : 𝑉 → R is the harmonic
extension of 𝑓 : 𝐵 → R. Then 𝑢 𝑓 has the following properties.

1. 𝑢 𝑓 takes its extremal values in 𝐵.

2. 𝑢 𝑓 is the unique minimizer of the Dirichlet energy (2.3.3) among functions that agree
with 𝑓 when restricted to 𝐵.

Proof.

1. This follows immediately from noting that 𝐿𝑢 𝑓 = 0 in 𝑉 \ 𝐵; by (2.5) this implies

that for all 𝑖 in𝑉 \𝐵, 𝑢 𝑓 (𝑖) is the weighted average of its values in the neighborhood

of 𝐵.

2. See the discussion in Section 3.3 in [Ken11].

�

As an aside, one can ask what happens if we pose the discrete Dirichlet problem on

the same graph with the same boundary conditions using the normalized Laplacian; that

is, we ask for 𝑢 : 𝑉 → R such that

(L𝑢) (𝑖) = 0, for 𝑖 in 𝑉 \ 𝐵,
𝑢 (𝑖) = 𝑓 (𝑖), for 𝑖 in 𝐵.

(2.9)

The function satisfying (2.9) is then in fact precisely the harmonic extension 𝑢 𝑓 . This

follows since L = 𝐷−1𝐿, where 𝐷 is the diagonal matrix such that 𝐷𝑖𝑖 =𝑚(𝑖), together
with the fact that 𝐷 is invertible if𝐺 is connected (or indeed, if there are no vertices in𝐺

of measure zero).

With these results in hand, we are ready to de�ne the two maps which will be the

central objects of study in this thesis.

De�nition 2.11. (Combinatorial Dirichlet-to-Neumann map) Let 𝐺 be a weighted graph

with boundary 𝐵. Let 𝑓 : 𝐵 → R, and let 𝑢 𝑓 : 𝑉 → R be the harmonic extension of 𝑓 .

The map Λ𝐿 : 𝑓 ↦→ (𝐿𝑢 𝑓 ) |𝐵 is then the combinatorial Dirichlet-to-Neumann (DtN) map
of 𝐺 w.r.t 𝐵.

Similarly to how the normalized Laplacian relates to the combinatorial Laplacian, we

introduce a ’normalized’ version of the combinatorial DtN map.

De�nition 2.12. (Normalized Dirichlet-to-Neumann map) Let 𝐺 be a weighted graph

with boundary 𝐵. Let 𝑓 : 𝐵 → R, and let 𝑢 𝑓 be the harmonic extension of 𝑓 . The map

ΛL : 𝑓 ↦→ (L𝑢 𝑓 ) |𝐵 is then the normalized Dirichlet-to-Neumann (DtN) map of 𝐺 w.r.t 𝐵.

The name Dirichlet-to-Neumann map has a natural explanation as follows. In the

Dirichlet problem (2.8), we set explicit conditions on the function 𝑢 solving it, by asking

that 𝑢 agrees with some given function 𝑓 on the boundary of 𝐺 . Conditions of this form

10
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are usually called Dirichlet conditions. Instead of (2.8), we can pose the following problem

on 𝐺 : Given a function 𝑔 : 𝐵 → R, we ask for 𝑢 : 𝑉 → R such that

(𝐿𝑢) (𝑖) = 0, for 𝑖 in 𝑉 \ 𝐵,
(𝐿𝑢) (𝑖) = 𝑔(𝑖), for 𝑖 in 𝐵.

(2.10)

Here, unlike in (2.8) we instead pose conditions on 𝐿𝑢 on the boundary of 𝐺 . Such

conditions are called Neumann conditions. Now, take 𝑔 to be the function 𝐿𝑢 𝑓 |𝐵 : 𝐵 → R,
where 𝑓 is the boundary conditions on 𝐺 in (2.8) and 𝑢 𝑓 is the harmonic extension

of 𝑓 . Then, the problems (2.8) and (2.10) will have the same solution 𝑢 𝑓 . Hence, the

(combinatorial) Dirichlet-to-Neumann map can be interpreted as mapping the Dirichlet
conditions in (2.8) to the Neumann conditions in (2.10) that would yield the same solution

𝑢 𝑓 as (2.8). Of course, the exact same argument can be made for the normalized DtN map,

in which the Dirichlet problem setting is instead given by (2.9) and the problem (2.10) is

posed using the normalized Laplacian.

2.4.2. Matrix expressions of DtN maps

It is sometimes helpful to think of both DtN maps as matrices. If the vertices of a

(connected) graph 𝐺 = (𝑉 , 𝐸,𝑤) with boundary 𝐵 are indexed as 1, 2, . . . , 𝑛, we identify

a function 𝑔 : 𝑉 → R with the vector in R𝑛 whose 𝑖:th entry is 𝑔(𝑖). Then we can �nd

an expression for the matrix representation of Λ𝐿 in terms of the matrix representation

of the combinatorial Laplacian 𝐿 of 𝐺 . We show the necessary calculation only for the

combinatorial DtN map, since the calculation for the normalized DtN map is very similar.

Index the vertices of 𝐺 so that the vertices of 𝐵 come �rst, and de�ne 𝑓 : 𝐵 → R.
Then we can write the combinatorial Laplacian 𝐿 (which is symmetric by de�nition) as a

block matrix

𝐿 =

[
𝑃 𝑄

𝑄𝑡 𝑅

]
, (2.11)

where 𝑃 acts on the boundary 𝐵 and 𝑅 acts on the interior 𝐼 = 𝑉 \ 𝐵. Write 𝑢𝐼 for the

harmonic extension of 𝑓 restricted to 𝐼 . Then, we have the following matrix equation for

the action of Λ𝐿 on 𝑓 :

𝐿𝑢 𝑓 =

[
𝑃 𝑄

𝑄𝑡 𝑅

] [
𝑓

𝑢𝐼

]
=

[
Λ𝐿 𝑓
0

]
. (2.12)

In other words, we have the system

𝑃 𝑓 +𝑄𝑢𝐼 = Λ𝐿 𝑓

𝑄𝑡 𝑓 + 𝑅𝑢𝐼 = 0.

Hence 𝑢𝐼 = −𝑅−1𝑄𝑡 𝑓 (where we know 𝑅 is invertible, see Theorem 2.17 below). We then

plug this expression into the other equation to get

𝑃 𝑓 −𝑄𝑅−1𝑄𝑡 𝑓 = Λ𝐿 𝑓 .

Then we �nally arrive at the expression

Λ𝐿 = 𝑃 −𝑄𝑅−1𝑄𝑡 . (2.13)

Algebraically, Λ𝐿 is the Schur complement of the Laplacian 𝐿 w.r.t. 𝑅. We elaborate on

this concept in Section 2.5. The Schur complement has myriad applications in multiple
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areas of mathematics, and the interested reader is referred to the treatise [Zha05]. One

can pose the analogous matrix equation for the normalized Laplacian as

L𝑢 𝑓 = 𝐷−1𝐿𝑢 𝑓 = 𝐷
−1

[
𝑃 𝑄

𝑄𝑡 𝑅

] [
𝑓

𝑢𝐼

]
=

[
ΛL 𝑓
0

]
whence one �nds that

ΛL = 𝐷−1
𝐵 (𝑃 −𝑄𝑅−1𝑄𝑡 ), (2.14)

where 𝐷𝐵 is the |𝐵 | × |𝐵 |-diagonal matrix such that 𝐷𝑖𝑖 = 𝑚(𝑖). Note that the vertices
of 𝐺 are indexed so that the boundary vertices come �rst, so 𝐷𝐵 is the diagonal matrix

whose entries are the vertex measures of the boundary vertices in 𝐺 .

Example 2.13 (DtN maps of the star graph). Consider the star graph 𝑆𝑛 on 𝑛 vertices

with unit edge weights and the measure 1 vertices designated as boundary vertices, as in

Figure 2.1.

n

1

2

3

n− 2

n− 1

Figure 2.1: The star graph 𝑆𝑛 on 𝑛 vertices.

With the enumeration in Figure 2.1, the combinatorial Laplacian 𝐿 of 𝑆𝑛 becomes

𝐿 =



1 0 0 0 . . . 0 −1
0 1 0 0 . . . 0 −1
0 0 1 0 . . . 0 −1
...

...
. . .

. . .
. . .

...
...

0 0 . . . 0 1 0 −1
0 0 0 . . . 0 1 −1
−1 −1 −1 −1 . . . −1 𝑛 − 1


.

If we partition 𝐿 as in (2.11), i.e.

𝐿 =

[
𝑃 𝑄

𝑄𝑡 𝑅

]
,

where 𝑃 acts on the boundary and 𝑅 acts on the interior, we get

𝑃 = 𝐼𝑛−1; 𝑄𝑡 = [−1 − 1, . . . ,−1]; 𝑅 = [𝑛 − 1],

12
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where 𝐼𝑛−1 denotes the (𝑛 − 1) × (𝑛 − 1) identity matrix. Therefore, the Schur complement

formula (2.13) yields that the combinatorial DtN map Λ𝐿 of 𝑆𝑛 with regard to the degree 1

vertices is given by

Λ𝐿 = 𝐼𝑛−1 −
1

𝑛 − 1

𝑄𝑄𝑡 = 𝐼𝑛−1 −
1

𝑛 − 1

I,

where I is the (𝑛 − 1) × (𝑛 − 1) matrix with all entries equal to 1. Hence

Λ𝐿 =
1

𝑛 − 1



𝑛 − 2 −1 −1 −1 . . . −1 −1
−1 𝑛 − 2 −1 −1 . . . −1 −1
−1 −1 𝑛 − 2 −1 . . . −1 −1
...

...
. . .

. . .
. . .

...
...

−1 −1 . . . −1 𝑛 − 2 −1 −1
−1 −1 −1 . . . −1 𝑛 − 2 −1
−1 −1 −1 −1 . . . −1 𝑛 − 2


.

By virtue of the normalized Schur complement formula (2.14), the combinatorial and

normalized DtN maps of 𝑆𝑛 coincide since all of the boundary vertices have measure 1.

Note that Λ𝐿 also de�nes a combinatorial Laplacian, namely the combinatorial Laplacian

of the complete graph on 𝑛 − 1 vertices with edge weights all equal to 1/(𝑛 − 1). This is
not a coincidence; by Theorem 2.17, the combinatorial DtN map of a graph always de�nes
the combinatorial Laplacian of a graph𝐺Λ whose vertices are the boundary vertices in𝐺 .

2.4.3. DtN map intuition: Electrical networks

An oftentimes helpful tool to better understand weighted graphs and especially the

combinatorial Laplacian and combinatorial DtN map on them is the terminology and

concepts employed in the study of electrical networks. We think of the weighted graph

𝐺 = (𝑉 , 𝐸,𝑤) as an electrical network whose edge weights de�ne conductances between
vertices. The conductance between two vertices is de�ned as the reciprocal of the perhaps

more familiar resistance between those same vertices. A function 𝑓 de�ned on (a subset

of) the vertices of 𝐺 is thought of as a voltage or potential on the network. A voltage

induces a current 𝐼 through the network. At the edge (𝑖, 𝑗), the current 𝐼𝑖 𝑗 is given by

Ohm’s law as

𝐼𝑖 𝑗 = 𝑈𝑖 𝑗/𝑅𝑖 𝑗
where𝑈𝑖 𝑗 is the potential di�erence between the vertices 𝑖, 𝑗 connected by the edge (𝑖, 𝑗),
i.e. 𝑈𝑖 𝑗 = 𝑓 (𝑖) − 𝑓 ( 𝑗) up to direction of the current, and 𝑅𝑖 𝑗 is the resistance in the edge

(𝑖, 𝑗). If we �x the potential at a subset 𝐵 of the vertices in the network, the familiar

Kirchho�’s law states that the net current through a vertex in 𝑉 \ 𝐵 is zero, or in other

words that the amount of current �owing into the vertex is equal to the amount of current

�owing out of the vertex. This net current at the vertex 𝑖 is, by Ohm’s law,

𝐼net(𝑖) =
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸
(𝑓 (𝑖) − 𝑓 ( 𝑗))/𝑅𝑖 𝑗 =

∑︁
𝑗 :(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗)) = (𝐿𝑓 ) (𝑖).

Hence, if 𝐼net = 0 at every vertex in 𝑉 \ 𝐵, then 𝐿𝑓 (𝑖) = 0 at every such vertex and the

potential satisfying Ohm’s law and Kirchho�’s law is precisely the harmonic extension

of 𝑓 as in De�nition 2.9. Therefore, the combinatorial DtN map Λ𝐿 : 𝑓 ↦→ (𝐿𝑢 𝑓 ) |𝐵 can
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be thought of as mapping the potential 𝑓 (𝑖) at the boundary vertex 𝑖 to the net current
exiting 𝑖 in the network with �xed potential 𝑓 at the vertices in 𝐵 that obeys Ohm’s

law in the rest of the network. In fact, more is true. In matrix form as in (2.13), Λ𝐿 can
actually be shown to itself be the Laplacian matrix of an electrical network whose vertices

are those in 𝐵, and whose conductances are related to the ’e�ective’ resistances in the

original network 𝐺 . In electrical networks terms, the network whose Laplacian is the

combinatorial DtN map of 𝐺 w.r.t. 𝐵 is called the Kron reduction of 𝐺 w.r.t. 𝐵, and has

been extensively studied, see e.g. [DB13]. We will summarize some important properties

related to this interpretation of the combinatorial DtN map in Section 2.6.

2.5. The Schur complement

The formula (2.13) expresses the combinatorial DtNmap of a graph in terms of submatrices

of its combinatorial Laplacian. The precise form of the formula is called the Schur
complement of the combinatorial Laplacian. In this section, we introduce the Schur

complement rigorously and describe how it can be interpreted.

2.5.1. Definition and motivation

At its core, the Schur complement is just an abstract algebraic operation on a matrix. At

�rst glance, it might seem a bit arti�cial, but the Schur complement has a natural interpre-

tation as a way to decouple a linear equation system consisting of one homogeneous part

and one inhomogeneous part, as suggested by the derivation of the Schur complement

formula (2.13). We �rst present the formal de�nition of the Schur complement and then

elaborate on this interpretation.

De�nition 2.14 (Schur complement). Let 𝐴 be an 𝑛 × 𝑛 matrix with entries in C, and
suppose 𝐴 is block partitioned as

𝐴 =

[
𝑃 𝐶

𝐵 𝑅

]
, (2.15)

where 𝑃 is an 𝑟 × 𝑟 principal submatrix and 𝑅 is an (𝑛 − 𝑟 ) × (𝑛 − 𝑟 ) principal submatrix.

Suppose in addition that 𝑃 is invertible. Then the matrix

𝑆𝐴 (𝑃) = 𝑅 − 𝐵𝑃−1𝐶

is the Schur complement of 𝐴 w.r.t. 𝑃 . We can also de�ne a Schur complement of 𝐴 w.r.t.

𝑅 if 𝑅 is invertible; in that case, the matrix

𝑆𝐴 (𝑅) = 𝑃 −𝐶𝑅−1𝐵

is the Schur complement of 𝐴 w.r.t. 𝑅.

Remark 2.15. More generally, one can de�ne the Schur complement of a matrix 𝐴

w.r.t. a subset of its rows and columns, for instance as in Section 2.1 in [DB13]. The

notation required to do this is however a bit too cumbersome to make it worthwile for

our purposes.

Now, suppose 𝐴 is a matrix partitioned as in (2.15), and suppose we have a matrix

equation [
𝑃 𝐶

𝐵 𝑅

] [
𝑓𝑃
𝑓𝑅

]
=

[
𝑔

0

]
, (2.16)

14
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reminiscent of (2.12). Again, as with (2.12) this matrix equation can be thought of as

consisting of two coupled subsystems

𝑃 𝑓𝑃 +𝐶𝑓𝑅 = 𝑔,

𝐵𝑓𝑃 + 𝑅𝑓𝑅 = 0,
(2.17)

with the matrices𝐶 and 𝐵 representing the coupling terms between the two systems. We

want to �nd a single expression for the inhomogeneous part of (2.17) which is equivalent

to the coupled system (2.17), thus decoupling (2.17). If we assume 𝑅 is invertible, we can

solve for 𝑓𝑅 to get 𝑓𝑅 = 𝑅−1𝐵𝑓𝑃 . If we plug this expression for 𝑓𝑅 into the inhomogeneous

part of (2.17), we end up as in (2.12) with the equivalent matrix equation

(𝑃 −𝐶𝑅−1𝐵) 𝑓𝑃 = 𝑔,

where the matrix 𝑃 −𝐶𝑅−1𝐵 is precisely the Schur complement of 𝐴 w.r.t. 𝑅.

2.5.2. Spectral bounds on Schur complements

As an example of why one can often expect to be able to estimate the eigenvalues of the

combinatorial DtN map of a graph 𝐺 when the same is possible for its combinatorial

Laplacian, we provide a theorem akin to the Cauchy Interlacing Theorem for the combi-

natorial DtN map of a graph, namely Theorem 2.16. The proof of Theorem 2.16 makes

extensive use of the fact that the combinatorial DtN map is the Schur complement of the

combinatorial Laplacian w.r.t. the boundary of 𝐺 . The same result, albeit with a di�erent

proof method, can be found in Theorem 3.5 in [DB13].

Theorem 2.16 (DtN Interlacing Theorem). Let𝐺 be a graph with𝑛 vertices, combinatorial
Laplacian 𝐿 and boundary 𝐵 with |𝐵 | = 𝑏. Let Λ𝐿 be the combinatorial DtN matrix of
𝐺 w.r.t 𝐵. Order the eigenvalues of 𝐿 and Λ𝐿 as 𝜆0(𝐿) ≤ 𝜆1(𝐿) ≤ . . . ≤ 𝜆𝑛−1(𝐿) and
𝜎0(Λ𝐿) ≤ 𝜎1(Λ𝐿) ≤ . . . ≤ 𝜎𝑏−1(Λ𝐿), respectively. Then

𝜆𝑖 (𝐿) ≤ 𝜎𝑖 (Λ𝐿) ≤ 𝜆𝑖+𝑛−𝑏 (𝐿), 𝑖 = 0, 1, 2, . . . , 𝑏 − 1. (2.18)

Proof. See Appendix A. �

2.6. Properties of the DtN map

An excellent survey of the properties of and areas of use for the combinatorial DtN map

Λ𝐿 (in matrix form, i.e. as in (2.13)) and its associated reduction process on weighted

graphs is provided by Dör�er and Bullo in [DB13]. The authors use the electrical network

terminology outlined in the previous section and refer to the combinatorial DtN matrix

as the Kron reduction of the combinatorial Laplacian of the network (with regard to a

subset 𝐵 of the vertices of the underlying graph). We refer here to some of the most

important properties of the DtN matrix.

The theorem below is a combination of parts of Lemmas 2.1 and 3.4 in [DB13].

Theorem 2.17 (Structural properties of the combinatorial DtN map). Let 𝐿 be the com-
binatorial Laplacian of a connected graph 𝐺 = (𝑉 , 𝐸,𝑤). Let 𝐵 be the boundary of 𝐺 , and
let Λ𝐿 be the combinatorial DtN matrix of𝐺 w.r.t. 𝐵. Then Λ𝐿 has the following properties:

1. Well-de�ned: The Schur complement formula (2.13) for Λ𝐿 is well-de�ned when𝐺 is
connected, in the sense that the matrix 𝑅 in the Schur complement formula (2.13) is
always invertible and the resulting matrix is unique up to relabelling of the vertices.

15
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2. Closure under Schur complement: Λ𝐿 is itself the Laplacian matrix of a graph 𝐺Λ

whose vertex set is 𝐵. Explicitly, this means that Λ𝐿 takes the form of a 𝑏 × 𝑏 matrix
with the properties in Fact 2.2.

3. Connectedness: Two vertices 𝑖, 𝑗 in 𝐺Λ have an edge between them if and only if
there is a path between them in 𝐺 whose edges are in the set

𝑆 = {(𝑖, 𝑗)} ∪ {(𝑘, 𝑙) ∈ 𝐸 : 𝑘, 𝑙 = 𝑖 or 𝑗 or 𝑘, 𝑙 ∈ 𝑉 \ 𝐵}.

In particular, 𝐺Λ is connected if 𝐺 is.

Remark 2.18. This of course implies that Λ𝐿 has all the properties of a Laplacian matrix

as outlined in Section 2.3. For instance, we will frequently use that Λ𝐿 is symmetric and

positive-semide�nite, and that the kernel of Λ𝐿 is spanned by the all-ones vector if 𝐺 is

connected.

We will not prove these properties except for the fact that 𝑅 as in (2.13) is always

invertible. This cute argument comes from a previous version of [GR21], though it is

probably not originally from there.

Proof that 𝑅 as in (2.13) is invertible. Denote the number of vertices of 𝐺 by 𝑛 and the

number of boundary vertices in 𝐵 by 𝑏. Enumerate the vertices of 𝐺 so the the boundary

vertices come �rst and write

𝐿 =

[
𝑃 𝑄

𝑄𝑡 𝑅

]
,

where 𝑃 acts on the boundary 𝐵 and 𝑅 acts on the interior𝑉 \ 𝐵. Suppose that the kernel
of 𝑅 is non-trivial so that 𝑅𝑓 = 0 for some 𝑓 in R𝑛−𝑏 . Let

𝑓 =

[
0𝑏
𝑓

]
where 0𝑏 is the all-zeroes vector with 𝑏 entries. But then 𝐿𝑓 = 0, contradicting that the
kernel of 𝐿 is spanned by the all-ones vector. Hence 𝑅 is invertible as we wanted. �

The properties in Theorem 2.17 suggest that there is another viewpoint of going from

the combinatorial Laplacian of to its DtN matrix w.r.t. a subset of the vertices, namely

as a graph reduction process (i.e. the Kron reduction as mentioned in Section 2.4.3) via

taking Schur complements. Indeed, as can be seen in Theorem 2.17 as well as in the rest

of [DB13], many properties of the original graph 𝐺 are retained in the graph 𝐺Λ whose

Laplacian is the combinatorial DtN matrix of 𝐺 and whose vertices are the boundary

vertices of 𝐺 . As we saw in Section 2.5.1, Kron reduction provides a way to ’focus in’

on a particular subset of the vertices that for some reason or another is of interest. We

will not expand further on this topic in this thesis, but highly recommend [DB13] for a

detailed account.

2.7. Graph operators and the Courant-Fischer Theorem

The celebrated Courant-Fischer Theorem is an abstract result regarding symmetric ma-

trices that nonetheless yields quite a bit of intuition into eigenvalues of matrices by

presenting them as solutions to optimization problems - a variational characterization of

each respective eigenvalue. We �rst present the theorem in its entirety and later show

what it entails in the special case of studying the eigenvalues of the operators on graphs

that we have introduced.

16
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De�nition 2.19 (Rayleigh quotient). Let𝑀 be a symmetric 𝑛 × 𝑛 matrix with entries in

R. The Rayleigh quotient of a vector 𝑓 in R𝑛 w.r.t. 𝑀 is

𝑅𝑀 (𝑓 ) B
(𝑓 , 𝑀 𝑓 )
(𝑓 , 𝑓 ) , (2.19)

where (·, ·) denotes the usual inner product in R𝑛 . Sometimes, we will write the Rayleigh

quotient of 𝑀 as simply 𝑅(𝑓 ) if there is no risk of confusing which matrix 𝑀 is being

studied.

Remark 2.20. Note that the Rayleigh quotient 𝑅𝑀 (𝑣) of an eigenvector 𝑣 of 𝑀 is its

corresponding eigenvalue 𝜆𝑣 :

𝑅𝑀 (𝑣) =
(𝑣, 𝑀𝑣)
(𝑣, 𝑣) =

𝜆𝑣 (𝑣, 𝑣)
(𝑣, 𝑣) = 𝜆𝑣 .

Essentially, the Courant-Fischer Theorem states that for appropriately chosen, quite

natural restrictions on 𝑓 , the eigenvalues of 𝑀 are extremal values of the Rayleigh

quotient. In the rest of this section, we will write 𝑆 ⊆ R𝑛 to denote a subspace of R𝑛 and
write 𝑓 ⊥ 𝑆 if 𝑓 is a vector such that (𝑓 , 𝑠) = 0 for all 𝑠 in 𝑆 .

The following formulation of the Courant-Fischer Theorem can be found in e.g.

[But08], where it is Theorem 32.

Theorem 2.21 (Courant-Fischer). Let 𝑀 be a symmetric 𝑛 × 𝑛 matrix with entries in R
and eigenvalues 𝜆0 ≤ 𝜆1 ≤ . . . ≤ 𝜆𝑛−1. Then it holds that

𝜆𝑘 = min

𝑆⊆R𝑛
dim(𝑆)=𝑛−𝑘−1

max

𝑓⊥𝑆
𝑓 ≠0

𝑅𝑀 (𝑓 ) = max

𝑆⊆R𝑛
dim(𝑆)=𝑘

min

𝑓⊥𝑆
𝑓 ≠0

𝑅𝑀 (𝑓 ). (2.20)

In particular, 𝜆0 ≤ 𝑅𝑀 (𝑓 ) ≤ 𝜆𝑛−1 for all 𝑓 in R𝑛. The Courant-Fischer Theorem

leads to quite explicit expressions for especially the smallest non-zero eigenvalue of

the combinatorial and normalized Laplacian and DtN map, as we will see in Corollaries

2.22 and 2.23. Analogous results as those in Corollaries 2.22 and 2.23 hold for the other

eigenvalues of each respective operator, but we will focus on estimates of the smallest

non-zero eigenvalue of the DtN maps in this thesis. Therefore, we only state Corollaries

2.22 and 2.23 for the smallest non-zero eigenvalue of the operators we study.

Corollary 2.22 (Variational characterizations of the spectral gaps of Laplacians). Let
𝐺 = (𝑉 , 𝐸,𝑤) be a connected graph with 𝑛 vertices enumerated as 1, 2, . . . , 𝑛, combinatorial
Laplacian 𝐿, and normalized Laplacian L. Let 𝜆1(𝐿) and 𝜆1(L) denote the spectral gap of
each respective Laplacian. Then

𝜆1(𝐿) = min

𝑓 ∈R𝑛
𝑓 ≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑𝑛

𝑖=1 𝑓 (𝑖)2
|

𝑛∑︁
𝑖=1

𝑓 (𝑖) = 0

}
, (2.21)

𝜆1(L) = min

𝑓 ∈R𝑛
𝑓 ≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑𝑛

𝑖=1𝑚(𝑖) 𝑓 (𝑖)2 |
𝑛∑︁
𝑖=1

𝑚(𝑖) 𝑓 (𝑖) = 0

}
. (2.22)
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Proof. The case for 𝐿: Since 𝐺 is connected, the eigenspace of the eigenvalue 0 of 𝐿 is

spanned by the all-ones vector, denoted 1. Moreover, 𝐿 is positive-semide�nite. Hence,

for 𝜆1 the 𝑆 in the second equation in (2.20) is the space spanned by the all-ones vector.

By plugging into the Rayleigh quotient, we get the equation for 𝜆1(𝐿) as

𝜆1(𝐿) = min

𝑓 ⊆R𝑛
𝑓 ≠0,𝑓⊥1

𝑅𝐿 (𝑓 ) = min

𝑓 ⊆R𝑛
𝑓 ≠0,𝑓⊥1

(𝑓 , 𝐿𝑓 )
(𝑓 , 𝑓 ) .

It follows from (2.7) that

(𝑓 , 𝐿𝑓 ) =
∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2.

Moreover, the condition 𝑓 ⊥ 1 means precisely that

∑𝑛
𝑖=1 𝑓 (𝑖) = 0. Therefore, the

expression becomes

𝜆1(𝐿) = min

𝑓 ∈R𝑛
𝑓 ≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑𝑛

𝑖=1 𝑓 (𝑖)2
|

𝑛∑︁
𝑖=1

𝑓 (𝑖) = 0

}
which is what was sought.

The case for L: We cannot actually use the Courant-Fischer Theorem directly on L
since it is not necessarily a symmetric matrix. Recall however that L = 𝐷−1𝐿, where 𝐷
is the diagonal matrix such that 𝐷𝑖𝑖 = 𝑚(𝑖). Moreover, note that 𝐷 is invertible if 𝐺 is

connected. Hence L is similar to the symmetric matrix L de�ned as L = 𝐷−1/2𝐿𝐷−1/2

and thus has the same eigenvalues as L. We recognize L as the symmetric normalized

Laplacian mentioned in Section 2.3.2. Once again 𝐺 is connected, so the eigenspace 0 of

L is spanned by the vector 𝐷1/21 since

L𝐷1/21 = 𝐷−1/2𝐿𝐷−1/2𝐷1/21 = 𝐷−1/2𝐿1 = 0.

By plugging into the Rayleigh quotient, we get the equation for 𝜆1(L) as

𝜆1(L) = min

𝑓 ⊆R𝑛
𝑓 ≠0,𝑓⊥𝐷1/21

𝑅𝑀 (𝑓 )

= min

𝑓 ⊆R𝑛
𝑓 ≠0,𝑓⊥𝐷1/21

(𝑓 , L𝑓 )
(𝑓 , 𝑓 )

= min

𝑓 ⊆R𝑛
𝑓 ≠0,𝑓⊥𝐷1/21

(𝑓 , 𝐷−1/2𝐿𝐷−1/2𝑓 )
(𝑓 , 𝑓 )

= min

𝑓 ⊆R𝑛
𝑓 ≠0,𝑓⊥𝐷1/21

(𝐷−1/2𝑓 , 𝐿𝐷−1/2𝑓 )
(𝑓 , 𝑓 ) .

The change of variables 𝐷−1/2𝑓 ↦→ 𝑔 (which we can perform since the matrix 𝐷1/2
is

invertible because 𝐺 is connected) yields

𝜆1(L) = min

𝑔⊆R𝑛
𝑔≠0,𝐷1/2𝑔⊥𝐷1/21

(𝑔, 𝐿𝑔)
(𝐷1/2𝑔, 𝐷1/2𝑔)

.

18



CHAPTER 2. NOTATION AND PRELIMINARY CONCEPTS

Again, (2.7) implies that

(𝑔, 𝐿𝑔) =
∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 (𝑔(𝑖) − 𝑔( 𝑗))2.

Moreover, the condition 𝐷1/2𝑔 ⊥ 𝐷1/21means precisely that

∑𝑛
𝑖=1𝑚(𝑖)𝑔(𝑖) = 0. Therefore,

our �nal expression is

𝜆1(L) = min

𝑔∈R𝑛
𝑔≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑔(𝑖) − 𝑔( 𝑗))2∑𝑛

𝑖=1𝑚(𝑖)𝑔(𝑖)2 |
𝑛∑︁
𝑖=1

𝑚(𝑖)𝑔(𝑖) = 0

}
,

which is what we wanted. �

The statement and proof of Corollary 2.22 served mostly as a warm-up for the proof

of Corollary 2.23, which uses similar techniques but is slightly more technical.

Corollary 2.23 (Variational characterization of the spectral gaps of DtN maps). Let
𝐺 = (𝑉 , 𝐸,𝑤) be a connected graph with 𝑛 vertices, enumerated as 1, 2, . . . , 𝑛. Let 𝐵 be the
boundary of𝐺 , and let 𝐿 denote the combinatorial Laplacian of𝐺 . Denote the combinatorial
DtN map of 𝐺 by Λ𝐿 and the normalized DtN map of 𝐺 by ΛL . Let 𝜎1 denote the spectral
gap of each respective DtN map. Then

𝜎1(Λ𝐿) = min

𝑓 ∈R𝑛
𝑓 |𝐵≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑

𝑖∈𝐵 𝑓 (𝑖)2
|
∑︁
𝑖∈𝐵

𝑓 (𝑖) = 0

}
, (2.23)

𝜎1(ΛL) = min

𝑓 ∈R𝑛
𝑓 |𝐵≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑

𝑖∈𝐵𝑚(𝑖) 𝑓 (𝑖)2 |
∑︁
𝑖∈𝐵

𝑚(𝑖) 𝑓 (𝑖) = 0

}
. (2.24)

Proof. Write 𝑏 for the number of boundary vertices in 𝐺 . We introduce the following

notation: For two vectors 𝑥 and 𝑦 in R𝑛 with inner product (𝑥,𝑦) B (𝑥,𝑦)𝑉 , we write
(𝑥,𝑦)𝐵 to denote the inner product (𝑥 |𝐵, 𝑦 |𝐵) on the boundary 𝐵 of𝐺 . We write (𝑥,𝑦)𝑉 \𝐵
to denote the inner product (𝑥 |𝑉 \𝐵, 𝑦 |𝑉 \𝐵)𝑉 \𝐵 on the interior 𝑉 \ 𝐵 of 𝐺 . With this

notation, note that

(𝑥,𝑦)𝑉 = (𝑥,𝑦)𝐵 + (𝑥,𝑦)𝑉 \𝐵 .
We will use this notation when it is easy to confuse the inner product in R𝑛 with the

inner product in R𝑏 .
The case for Λ𝐿: By Theorem 2.17, the combinatorial DtN map of 𝐺 w.r.t. 𝐵 is again

the Laplacian of a connected graph. Therefore, the kernel of Λ𝐿 is spanned by the all-ones
vector in R𝑏 , which we denote by 1. Take 𝑓 to be a vector in R𝑏 . Since the combinatorial

DtN matrix is a Laplacian and therefore symmetric, we can apply the Courant-Fischer

Theorem. Since Λ𝐿 is positive-semide�nite, again by virtue of being a combinatorial

Laplacian, the Courant-Fischer Theorem yields that

𝜎1(Λ𝐿) = max

𝑆⊆R𝑏
dim(𝑆)=1

min

𝑓⊥𝑆
𝑓 ≠0

𝑅Λ𝐿
(𝑓 ) = min

𝑓⊥1
𝑓 ≠0

𝑅Λ𝐿
(𝑓 ).

The Rayleigh quotient is

𝑅Λ𝐿
(𝑓 ) = (𝑓 ,Λ𝐿 𝑓 )

(𝑓 , 𝑓 ) =
(𝑓 , (𝐿𝑢 𝑓 ) |𝐵)

(𝑓 , 𝑓 ) ,
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where 𝑢 𝑓 is the harmonic extension of 𝑓 to all of R𝑛 . By de�nition, we have that 𝐿𝑢 𝑓 = 0

on 𝑉 \ 𝐵 and that 𝑢 𝑓 = 𝑓 on 𝐵. Hence, with notation as above we get

0 = (𝑢 𝑓 , 𝐿𝑢 𝑓 )𝑉 \𝐵 = (𝑢 𝑓 , 𝐿𝑢 𝑓 )𝑉 − (𝑓 , 𝐿𝑢 𝑓 )𝐵 .

Now (2.7) implies that

(𝑢 𝑓 , 𝐿𝑢 𝑓 )𝑉 =
∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 (𝑢 𝑓 (𝑖) − 𝑢 𝑓 ( 𝑗))2.

Therefore, we arrive at the expression

(𝑓 , 𝐿𝑢 𝑓 )𝐵 =
∑︁
(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 (𝑢 𝑓 (𝑖) − 𝑢 𝑓 ( 𝑗))2.
(2.25)

From now on we write (·, ·)𝐵 = (·, ·). Using (2.25), the Rayleigh quotient becomes

𝑅Λ𝐿
(𝑓 ) = (𝑓 ,Λ𝐿 𝑓 )

(𝑓 , 𝑓 ) =

∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑢 𝑓 (𝑖) − 𝑢 𝑓 ( 𝑗))2∑

𝑖∈𝐵 𝑓 (𝑖)2
.

Hence, the expression for 𝜎1(Λ𝐿) becomes

𝜆1(Λ𝐿) = min

𝑓 ∈R𝑏
𝑓 ≠0,𝑓⊥1

∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑢 𝑓 (𝑖) − 𝑢 𝑓 ( 𝑗))2∑

𝑖∈𝐵 𝑓 (𝑖)2
. (2.26)

However, among functions 𝑔 in R𝑛 such that 𝑔 |𝐵= 𝑓 , the harmonic extension 𝑢 𝑓 of 𝑓 to

R𝑛 is the unique minimizer of the Dirichlet energy (see Lemma 2.10), which happens to

be the numerator in (2.26). This fact lets us write

𝜎1(Λ𝐿) = min

𝑓 ∈R𝑏
𝑓 ≠0,𝑓⊥1


min𝑔∈R𝑛

𝑔 |𝐵=𝑓

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑔(𝑖) − 𝑔( 𝑗))2

}
∑
𝑖∈𝐵 𝑓 (𝑖)2

 ,
but this is just a reformulation of the expression

𝜎1(Λ𝐿) = min

𝑓 ∈R𝑛
𝑓 |𝐵≠0,𝑓 |𝐵⊥1

∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑

𝑖∈𝐵 𝑓 (𝑖)2
.

Finally, we note that the condition 𝑓 |𝐵⊥ 1 means precisely that

∑
𝑖∈𝐵 𝑓 (𝑖) = 0. This leads

to the �nal expression

𝜎1(Λ𝐿) = min

𝑓 ∈R𝑛
𝑓 ≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑

𝑖∈𝐵 𝑓 (𝑖)2
|
∑︁
𝑖∈𝐵

𝑓 (𝑖) = 0

}
,

which is what was sought.

The case for ΛL : As was the case for the normalized Laplacian, ΛL is not necessarily

a symmetric matrix, so we cannot use the Courant-Fischer theorem directly. However,

we can use the Schur complement formula (2.14) to note that

ΛL = 𝐷−1
𝐵 (𝑃 −𝑄𝑅−1𝑄𝑡 ) = 𝐷−1

𝐵 Λ𝐿, (2.27)
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where 𝐷𝐵 is the 𝑏 × 𝑏-diagonal matrix whose entries are the vertex measures𝑚(𝑖) of
the boundary vertices of 𝐺 . Note that if 𝐺 is connected, the matrix 𝐷𝐵 is invertible.

The expression (2.27) shows that ΛL is similar to, and thus shares its eigenvalues with,

𝑀 B 𝐷
−1/2
𝐵

Λ𝐿𝐷
−1/2
𝐵

, which is a symmetric matrix since Λ𝐿 is a combinatorial Laplacian.

Moreover, since Λ𝐿 is the combinatorial Laplacian of a connected graph, its only eigen-

vector with eigenvalue 0 consists of the all-ones vector 1. This implies that the kernel of

𝑀 is spanned by 𝐷
1/2
𝐵

1. We now �nd a variational characterization of the �rst nonzero

eigenvalue of 𝑀 and thus of ΛL . Since Λ𝐿 is a combinatorial Laplacian and therefore

positive-semide�nite,𝑀 can also be easily seen to be positive-semide�nite. Therefore,

the Courant-Fischer Theorem applied to𝑀 yields

𝜎1(𝑀) = max

𝑆⊆R𝑏
dim(𝑆)=1

min

𝑓⊥𝑆
𝑓 ≠0

𝑅𝑀 (𝑓 ) = min

𝑓⊥𝐷1/2
𝐵

1
𝑓 ≠0

𝑅𝑀 (𝑓 ).

The Rayleigh quotient of𝑀 is

𝑅𝑀 (𝑔) =
(𝑔,𝑀𝑔)
(𝑔,𝑔) =

(𝑔, 𝐷−1/2
𝐵

Λ𝐿𝐷
−1/2
𝐵

𝑔)
(𝑔,𝑔) ,

so expression for 𝜎1(𝑀) becomes

𝜎1(𝑀) = min

𝑔∈R𝑏

𝑓 ≠0,𝑔⊥𝐷1/2
𝐵

1

(𝑔, 𝐷−1/2
𝐵

Λ𝐿𝐷
−1/2
𝐵

𝑔)
(𝑔,𝑔) .

We make a change of variables in R𝑏 via 𝐷
−1/2
𝐵

𝑓 ↦→ 𝑔 (which we can perform since 𝐺 is

connected, which implies that 𝐷
1/2
𝐵

is invertible). This gives

𝜎1(𝑀) = min

𝑓 ∈R𝑏

𝑓 ≠0,𝐷1/2
𝐵
𝑓⊥𝐷1/2

𝐵
1

(𝑓 ,Λ𝐿 𝑓 )
(𝐷1/2

𝐵
𝑓 , 𝐷

1/2
𝐵
𝑓 )

= min

𝑓 ∈𝑅𝑏

𝑓 ≠0,𝐷1/2
𝐵
𝑓⊥𝐷1/2

𝐵
1

(𝑓 , (𝐿𝑢 𝑓 ) |𝐵)
(𝐷1/2

𝐵
𝑓 , 𝐷

1/2
𝐵
𝑓 )
.

Using the same ’Green’s formula’ (2.25) as in the combinatorial case this becomes

𝜎1(𝑀) = min

𝑓 ∈R𝑏

𝑓 ≠0,𝐷1/2
𝐵
𝑓⊥𝐷1/2

𝐵
1

∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑢 𝑓 (𝑖) − 𝑢 𝑓 ( 𝑗))2∑

𝑖∈𝐵𝑚(𝑖) 𝑓 (𝑖)2 .

By the same arguments as in the combinatorial case, this reduces to

𝜎1(𝑀) = min

𝑓 ∈R𝑛
𝑓 |𝐵≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑

𝑖∈𝐵𝑚(𝑖) 𝑓 (𝑖)2 |
∑︁
𝑖∈𝐵

𝑚(𝑖) 𝑓 (𝑖) = 0

}
,

as sought.

�

The variational characterizations (2.21), (2.22) of the spectral gaps of the combinatorial

and normalized Laplacian are very similar to their respective DtN counterparts (2.23) and

(2.24), and indeed, adapting methods used to optimize the expressions in Corollary 2.22

to the expressions in Corollary 2.23 is the major theme in the novel results in this thesis.
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2.8. The DtN map onqantum graphs

An approach to the study of network-like objects which is one additional step in the

continuous direction is to study (operators on) metric graphs, where one thinks of the
edges (𝑖, 𝑗) of a graph as one-dimensional intervals with lengths 𝐿𝑖 𝑗 ∈ R, whence the
graph itself takes the form of a one-dimensional simplicial complex. A metric graph

together with a di�erential operator is usually called a quantum graph, and their study

is an active �eld of research; we refer the interested reader to [BK13] for a thorough

overview of the �eld. In some situations, one can show that the analogue of a DtN map

on a quantum graph can be directly studied via its discrete counterpart, and so the study

of the DtN map on discrete graphs can in fact also be an avenue to new insights into its

counterpart on quantum graphs. We will exhibit such a case in this section.

All de�nitions in this section are standard and can be found, albeit slightly reformu-

lated, in Chapter 1 of [BK13].

2.8.1. Introductory concepts and definitions

De�nition 2.24 ((Finite) Metric graph). A �nite graph𝐺 = (𝑉 , 𝐸) is a �nite metric graph
if:

1. Each edge (𝑖, 𝑗) is identi�ed with an interval [0, 𝐿𝑖 𝑗 ]. We refer to 𝐿𝑖 𝑗 as the length
of the edge (𝑖, 𝑗). If (𝑖, 𝑗) and (𝑖, 𝑘) are edges in 𝐸, the points corresponding to 𝑖

in the intervals 𝐿𝑖 𝑗 and 𝐿𝑖𝑘 are identi�ed. There are situations where in�nite edge

lengths are natural to consider, but we will limit ourselves to �nite edge lengths

here.

2. In an edge (𝑖, 𝑗) there are two coordinates 𝑥𝑖 and 𝑥 𝑗 taking values in [0, 𝐿𝑖 𝑗 ], mea-

suring the distance of a point in (𝑖, 𝑗) from the vertices 𝑖 and 𝑗 , respectively. Note

that 𝑥𝑖 = 𝐿𝑖, 𝑗 − 𝑥 𝑗 .

Often one also considers metric graphs with in�nitely many vertices but with �nite

vertex degrees, but we limit ourselves to �nitely many vertices as well here. A metric

graph can be identi�ed with the one-dimensional simplicial complex which is the union

of all the edges and in which we identify all edge ends that correspond to the same vertex.

A metric graph can also be readily transformed into a metric space. To do this, we also

need to de�ne a path on a metric graph.

De�nition 2.25 (Path in a metric graph). Suppose 𝑥 and 𝑦 are contained in the edges

(𝑖, 𝑗), (𝑘, 𝑙) respectively and there is a sequence (𝑖, 𝑗), ( 𝑗, 𝑣1), . . . , (𝑣𝑚, 𝑘), (𝑘, 𝑙) of edges in
𝐺 . The path de�ned by this sequence is the union of the edges ( 𝑗, 𝑣1), (𝑣1, 𝑣2), . . . , (𝑣𝑚, 𝑘)
and the subintervals [0, 𝑥] ⊂ (𝑖, 𝑗) (w.r.t. the coordinate 𝑥 𝑗 ) and [0, 𝑦] ⊂ (𝑘, 𝑙) (w.r.t.
the coordinate 𝑥𝑘 ). The length of this path is the sum of the edge lengths of the edges

( 𝑗, 𝑣1), (𝑣1, 𝑣2), . . . , (𝑣𝑚, 𝑘) together with the coordinate values of 𝑥 and 𝑦 w.r.t. the coordi-

nates 𝑥 𝑗 and 𝑥𝑘 respectively.

De�nition 2.26 (Metric on a metric graph). The metric 𝜌 between two points 𝑥,𝑦 in a

metric graph Γ is the function that maps (𝑥,𝑦) to the length of the shortest path between

𝑥 and 𝑦 in Γ.

When studying operators on graphs, one naturally needs a function space on which

these operators are de�ned. The function spaces on quantum graphs that one usually

works with are covered by the following two de�nitions.
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De�nition 2.27 (Function space (of a metric graph)). The function space 𝐿2(Γ) of a metric

graph Γ = (𝑉 , 𝐸) is the space of functions that are in 𝐿2((𝑖, 𝑗)) when restricted to each

edge (𝑖, 𝑗) in 𝐸.

De�nition 2.28 (Sobolev space (of a metric graph)). The Sobolev space 𝐻 1(Γ) of a metric

graph Γ = (𝑉 , 𝐸) consists of continuous functions on Γ (with the metric as in De�nition

2.26 on Γ) that are in the Sobolev spaces 𝐻 1((𝑖, 𝑗)) when restricted to each edge 𝑒 in 𝐸.

As remarked in the discussion following De�nition 1.3.6 in [BK13], the Sobolev space

𝐻𝑘 (Γ) is unable to be de�ned in this way since unlike in the case 𝑘 = 1 there is no natural

condition at the vertices. Therefore, one usually just de�nes

𝐻𝑘 (Γ) =
⊕
(𝑖, 𝑗)∈𝐸

𝐻𝑘 ((𝑖, 𝑗)),

and varies the vertex conditions towards what is reasonable for the problem at hand.

By continuity, functions in 𝐻 1(Γ) take on the same value at a vertex 𝑖 for every edge

adjacent to 𝑖 . By associating a di�erential operator on a metric graph Γ, it turns into what
is called a quantum graph. We will consider the operator −𝑑2 de�ned by the negative

second derivative acting on each edge as 𝑓 ↦→ − 𝑑2

𝑑𝑥2
𝑓 , where 𝑥 is a coordinate de�ned

on the edge as in De�nition 2.24. Note that the second derivative operator is symmetric

w.r.t. the direction of the coordinate in each edge.

We also want to impose conditions on functions de�ned on Γ. De�ne

𝜕𝑓 (𝑖) :=
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸

𝑑

𝑑𝑥𝑖
𝑓 | (𝑖, 𝑗) (𝑖). (2.28)

Note that the direction of each derivative in 𝜕𝑓 (𝑖) is away from the vertex 𝑖 . The most

common conditions, and indeed those we will consider, are usually called the standard
or continuity-Kirchho� conditions:

Standard conditions on 𝑓 :

{
𝑓 is continuous on Γ, and

at each vertex 𝑖 , it holds that 𝜕𝑓 (𝑖) = 0.
(2.29)

2.8.2. The DtN map onqantum graphs

The discussion in this section is lifted from Section 3 in [KL20]. In the analogue of the

Dirichlet problem setting (2.8) on a quantum graph, we can de�ne a DtN map. More

precisely, let Γ = (𝑉 , 𝐸) be a quantum graph with the negative second derivative operator.

Let 𝐵 be a subset of its vertices with |𝐵 | = 𝑏, and let 𝑔 ∈ R𝑏 be a function assigning values

to the vertices in 𝐵. The Dirichlet-like problem to consider is �nding (the unique, for

reasons we do not need to elaborate on here) 𝑓 in 𝐻 1(Γ) such that

−𝑑
2𝑓

𝑑𝑥2
= 0, in the interior of each edge,

𝑓 |𝐵 = 𝑔,

𝜕𝑓 (𝑖) = 0, at every vertex 𝑖 in 𝑉 \ 𝐵.

(2.30)

Note that we impose continuity-Kirchho� conditions in the interior 𝑉 \ 𝐵. In the context

of the problem (2.30) on quantum graphs, the conditions 𝑓 |𝐵= 𝑔 for some given 𝑔, i.e.
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explicit conditions on 𝑓 itself, are usually calledDirichlet conditions, just as for the discrete
problem (2.8). Similarly to how the problem (2.8) relates to (2.10), one can instead pose a

related problem with a di�erent kind of boundary conditions:

−𝑑
2𝑓

𝑑𝑥2
= 0, in the interior of each edge,

𝜕𝑓 (𝑖) = 𝑔(𝑖), for all vertices 𝑖 on 𝐵,
𝜕𝑓 (𝑖) = 0, at every vertex 𝑖 in 𝑉 \ 𝐵.

(2.31)

Conditions of the form

𝜕𝑓 (𝑖) = 𝑔(𝑖), for all vertices 𝑖 on 𝐵,

i.e. conditions on the derivatives of a prospective solution to the problem (2.31), are instead

called Neumann conditions. The DtN (Dirichlet-to-Neumann) map 𝑀 is then the operator

that maps given Dirichlet conditions 𝑔 in R𝑏 on (2.30) to the Neumann conditions that

when posed on (2.31) would yield the same solution 𝑓 as the the problem (2.30). With

some enumeration of the vertices, we can identify𝑀 with a 𝑏 × 𝑏 matrix just as in the

discrete case. We will show that in fact𝑀 is the combinatorial DtN map of the weighted

graph 𝐺 = (𝑉 , 𝐸,𝑤) with boundary 𝐵, where 𝑤 is the weight function that puts the

weight𝑤𝑖 𝑗 =
1

𝐿𝑖 𝑗
on the edge (𝑖, 𝑗). We denote the combinatorial Laplacian of 𝐺 by 𝐿𝐺 .

Gernandt and Rohleder [GR21] give a brief discussion on why this is the case, which

we follow. Enumerate the vertices of Γ by 1, . . . , 𝑛 so that the boundary vertices come

�rst. We are looking for the matrix𝑀 such that

𝑀


𝑓 (1)
𝑓 (2)
...

𝑓 (𝑏)


=


𝜕𝑓 (1)
𝜕𝑓 (2)
...

𝜕𝑓 (𝑏)


whenever 𝑓 is a solution of (2.30) with boundary conditions given by a function 𝑔 in R𝑏 .
Such a function 𝑓 is linear on every edge; indeed, take an arbitrary vertex 𝑖 in 𝑉 . Then

the function 𝑓 such that

𝑓 | (𝑖, 𝑗) (𝑥𝑖) =
𝑥𝑖

𝐿𝑖 𝑗
𝑔(𝑖) +

𝐿𝑖 𝑗 − 𝑥𝑖
𝐿𝑖 𝑗

𝑔( 𝑗)

solves (2.30), so by uniqueness 𝑓 is necessarily linear. Moreover

𝑑

𝑑𝑥𝑖
𝑓 | (𝑖, 𝑗) (𝑖) =

1

𝐿𝑖 𝑗
(𝑓 (𝑖) − 𝑓 ( 𝑗)) = 𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗)) .

By restricting to the vertices, we get by the continuity-Kirchho� conditions that for any

vertex 𝑖 in 𝑉 \ 𝐵, it holds that

0 =
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸

𝑑

𝑑𝑥𝑖
𝑓 | (𝑖, 𝑗) (𝑖) =

∑︁
𝑗 :(𝑖, 𝑗)∈𝐸

𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗)) = 𝐿𝐺 𝑓 (𝑖).

Hence, 𝑓 |𝑉 is the (discrete) harmonic extension of 𝑔 on𝐺 in the sense of (2.8). Therefore

the matrix𝑀 such that

(𝑀𝑓 |𝐵) (𝑖) =
∑︁

𝑗 :(𝑖, 𝑗)∈𝐸

𝑑

𝑑𝑥𝑖
𝑓 | (𝑖, 𝑗) (𝑖) = 𝐿𝐺 𝑓 |𝑉 (𝑖) = Λ𝐿𝐺 𝑓 |𝑉 (𝑖),
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whenever 𝑖 is a vertex in 𝐵, is precisely the matrix that maps 𝑓 (𝑖) to (𝐿𝐺𝑢 𝑓 ) |𝐵 (𝑖) =

Λ𝐿𝐺 𝑓 |𝐵 (𝑖), where 𝑢 𝑓 is the harmonic extension of 𝑓 |𝐵 to 𝑉 . This coincides with the

de�nition of the combinatorial DtN matrix Λ𝐿𝐺 on 𝐺 w.r.t. 𝐵.

Remark 2.29. It is not so surprising that this connection exists if we again consider both

the metric graph Γ and discrete graph 𝐺 as electrical networks, similarly to in Section

2.4.3; the edge lengths 𝐿𝑖 𝑗 have natural interpretations as resistances in the network, so

the corresponding discrete conductances are the inverses 1/𝐿𝑖 𝑗 . The continuity-Kirchho�
conditions on the interior vertices of Γ (which can be interpreted as demanding that

Kirchho�’s current law is satis�ed in the interior of Γ) forces 𝑓 to be harmonic on the

vertices, whereby the connection follows.

25



Chapter 3

Planar graphs with ’balanced’ boundary

3.1. The result

In this section, we prove Theorem 3.1 which gives upper bounds on the spectral gaps of

the combinatorial and normalized DtN maps of a planar graph 𝐺 with boundary 𝐵. We

use a topologically-inclined technique pioneered in Theorem 3.3 in Spielman and Teng

[ST07] and generalized in Theorem 3.5 in Plümer [Plü20].

Theorem 3.1. Let 𝐺 = (𝑉 , 𝐸,𝑤) be a planar weighted graph with boundary 𝐵. Suppose
the number of boundary vertices in𝐺 , denoted 𝑏, is at least 5. Then the spectral gap 𝜎1(Λ𝐿)
of the combinatorial DtN map on 𝐺 w.r.t. 𝐵 satis�es

𝜎1(Λ𝐿) ≤
8max𝑖∈𝑉 𝑚(𝑖)

𝑏
. (3.1)

If, in addition, the boundary vertices of 𝐺 satisfy

2(𝑚(𝑖) +𝑚( 𝑗)) <
∑︁
𝑘∈𝐵

𝑚(𝑘), (3.2)

for all vertices 𝑖, 𝑗 in 𝐵 such that (𝑖, 𝑗) is in 𝐸 or 𝑖 = 𝑗 , the spectral gap 𝜎1(ΛL) of the
normalized DtN map on 𝐺 w.r.t. 𝐵 satis�es

𝜎1(ΛL) ≤
8max𝑖∈𝑉 𝑚(𝑖)

Vol(𝐵) . (3.3)

Remark 3.2. If the boundary of 𝐺 consists of all of 𝑉 , the combinatorial DtN map on 𝐺

is just the combinatorial Laplacian on 𝐺 . Then, the bound (3.3) specializes to Theorem

3.9 in [Plü20]. If we in addition set all of the edge weights in 𝐺 to 1, the bound (3.1)

specializes to Theorem 3.3 in [ST07].

Remark 3.3. The constraint that the number of boundary vertices is at least 5 comes

from the proof of Theorem 3.7, which in turn is integral to the proof of Theorem 3.1.

These constraints could potentially be relaxed in special cases, such as when there are no

edges between boundary vertices, but are needed in general for the proof of Theorem 3.7

to be valid.

Remark 3.4. A natural question to ask is whether the bounds (3.1) and (3.3) are tight for

any graphs whose Steklov eigenvalues are able to be computed explicitly with relative

ease. The author has so far not been able to �nd any such example. We can at least

note that the bound (3.1) is better than some trivial bounds; by Theorem 2.16, all of the
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eigenvalues of the combinatorial DtN map Λ𝐿 of a graph𝐺 = (𝑉 , 𝐸,𝑤) can be bounded by

the largest eigenvalue of the combinatorial Laplacian 𝐿 of 𝐺 . Furthermore, it is classical

that the largest eigenvalue of the combinatorial Laplacian of 𝐺 can be bounded from

above by 2max𝑖∈𝑉 𝑚(𝑖). Therefore, the bound (3.1) improves this (trivial) estimate of

𝜎1(Λ𝐿) whenever there are more than four boundary vertices, which we in any case

demand in Theorem 3.1.

We will need to establish quite a bit of background to prove Theorem 3.1. We follow

a similar approach as in Section 3 in [ST07]. We start by recalling the variational charac-

terizations of the spectral gaps 𝜎1(ΛL) and 𝜎1(ΛL) of the combinatorial and normalized

DtN maps as in (2.23) and (2.24).

𝜎1(Λ𝐿) = min

𝑓 :𝑉→R𝑛
𝑓 |𝐵≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑

𝑖∈𝐵 𝑓 (𝑖)2
|
∑︁
𝑖∈𝐵

𝑓 (𝑖) = 0

}
,

𝜎1(ΛL) = min

𝑓 :𝑉→R𝑛
𝑓 |𝐵≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑

𝑖∈𝐵𝑚(𝑖) 𝑓 (𝑖)2 |
∑︁
𝑖∈𝐵

𝑚(𝑖) 𝑓 (𝑖) = 0

}
.

It will be more instructive to think of the variable 𝑓 in (2.23) and (2.24) as a vector in R𝑛

rather than a function on the vertices of 𝐺 . To emphasize this, we identify 𝑓 with the

vector 𝑣 = 𝑣 𝑓 in R
𝑛
whose 𝑖:th entry is 𝑓 (𝑖), and write 𝑓 (𝑖) as 𝑣𝑖 . With this notation, the

variational characterizations (2.23) and (2.24) become

𝜎1(Λ𝐿) = min

𝑣∈R𝑛
𝑣 |𝐵≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑣𝑖 − 𝑣 𝑗 )2∑

𝑖∈𝐵 𝑣
2

𝑖

|
∑︁
𝑖∈𝐵

𝑣𝑖 = 0

}
, (3.4)

𝜎1(ΛL) = min

𝑣∈R𝑛
𝑣 |𝐵≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑣𝑖 − 𝑣 𝑗 )2∑

𝑖∈𝐵𝑚(𝑖)𝑣2
𝑖

|
∑︁
𝑖∈𝐵

𝑚(𝑖)𝑣𝑖 = 0

}
. (3.5)

Now we establish equivalent expressions for 𝜎1(Λ𝐿) and 𝜎1(ΛL) whose input param-

eters are collections of 𝑛 vectors in R𝑙 , for an arbitrary integer 𝑙 , instead of a collection of

𝑛 real numbers (i.e. the entries of 𝑣) as in (3.4) and (3.5). This will help us use topological

techniques to construct test functions for (3.4) and (3.5). These equivalent expressions

are established in Lemma 3.5, which is analogous to Lemma 3.1 in [ST07].

Lemma 3.5 (Embedding lemma). Let 𝐺 = (𝑉 , 𝐸,𝑤) be a connected weighted graph on 𝑛
vertices with boundary 𝐵. Let 𝑙 be an arbitrary integer. Then the spectral gaps 𝜎1(Λ𝐿) and
𝜎1(ΛL) of the combinatorial and normalized DtN maps Λ𝐿 and ΛL on𝐺 can be written as

𝜎1(Λ𝐿) = min

v1,...,v𝑛∈R𝑙

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑

𝑖∈𝐵 ‖v𝑖 ‖2
|
∑︁
𝑖∈𝐵

v𝑖 = 0, {v𝑖}𝑖∈𝐵 not all 0
}
, (3.6)

𝜎1(ΛL) = min

v1,...,v𝑛∈R𝑙

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑

𝑖∈𝐵𝑚(𝑖)‖v𝑖 ‖2
|
∑︁
𝑖∈𝐵

𝑚(𝑖)v𝑖 = 0, {v𝑖}𝑖∈𝐵 not all 0
}
. (3.7)

Proof. We prove Lemma 3.5 for ΛL ; the proof method is entirely analogous for Λ𝐿 . Recall
from (3.5) that

𝜎1(ΛL) = min

𝑣∈R𝑛
𝑣 |𝐵≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑣𝑖 − 𝑣 𝑗 )2∑

𝑖∈𝐵𝑚(𝑖)𝑣2
𝑖

|
∑︁
𝑖∈𝐵

𝑚(𝑖)𝑣𝑖 = 0

}
.
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Consider a collection v1, . . . , v𝑛 of vectors in R𝑙 such that

∑
𝑖∈𝐵𝑚(𝑖)v𝑖 = 0. Further we

assume that not all of the vectors in the set {v𝑖}𝑖∈𝐵 are the zero vector. Let the 𝑘 :th entry

of the 𝑖:th vector be denoted by 𝑣𝑖,𝑘 . Then we can write∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑

𝑖∈𝐵𝑚(𝑖)‖v𝑖 ‖2
=

∑
(𝑖, 𝑗)∈𝐸

∑𝑙
𝑘=1
𝑤𝑖 𝑗 (𝑣𝑖,𝑘 − 𝑣 𝑗,𝑘)2∑

𝑖∈𝐵
∑𝑙
𝑘=1
𝑚(𝑖)𝑣2

𝑖,𝑘

=

∑𝑙
𝑘=1

∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑣𝑖,𝑘 − 𝑣 𝑗,𝑘)2∑𝑙
𝑘=1

∑
𝑖∈𝐵𝑚(𝑖)𝑣2

𝑖,𝑘

.

However, for each 𝑘 it holds by assumption that

∑
𝑖∈𝐵𝑚(𝑖)𝑣𝑖,𝑘 = 0. By (3.5) it follows that

for each 𝑘 individually, we have∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑣𝑖,𝑘 − 𝑣 𝑗,𝑘)2∑

𝑖∈𝐵𝑚(𝑖)𝑣2
𝑖,𝑘

≥ 𝜎1(ΛL).

By the well-known fact that

∑
𝑖 𝑥𝑖/

∑
𝑖 𝑦𝑖 ≥ min𝑖 𝑥𝑖/𝑦𝑖 for 𝑥𝑖, 𝑦𝑖 > 0 we then have that∑

(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑
𝑖∈𝐵𝑚(𝑖)‖v𝑖 ‖2

=

∑𝑙
𝑘=1

∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑣𝑖,𝑘 − 𝑣 𝑗,𝑘)2∑𝑙
𝑘=1

∑
𝑖∈𝐵𝑚(𝑖)𝑣2

𝑖,𝑘

≥ min

𝑘

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑣𝑖,𝑘 − 𝑣 𝑗,𝑘)2∑

𝑖∈𝐵𝑚(𝑖)𝑣2
𝑖,𝑘

}
≥ 𝜎1(ΛL) .

(3.8)

What remains is to show that the inequality is not strict, so that if we minimize the left-

hand side of (3.8) among collections v1, . . . , v𝑛 of vectors in R𝑙 such that

∑
𝑖∈𝐵𝑚(𝑖)v𝑖 = 0,

we get 𝜎1(ΛL). We can see that this is the case as follows: We further restrict the v𝑖 to be
scalar multiples of the all-ones vector 1 in R𝑙 , so that v𝑖 = 𝑐𝑖1, for a collection of 𝑛 real

numbers 𝑐1, . . . , 𝑐𝑛 . Then the left-hand side of (3.8) reduces to∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑

𝑖∈𝐵𝑚(𝑖)‖v𝑖 ‖2
=

∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑐𝑖 − 𝑐 𝑗 )2∑

𝑖∈𝐵𝑚(𝑖)𝑐2
𝑖

. (3.9)

The right-hand side in (3.9) is the same expression as in (3.5), so minimizing over the

𝑐𝑖 yields 𝜎1(ΛL). However, this minimum cannot be smaller in magnitude than if we

minimize the left-hand side of (3.9) over collections v1, . . . , v𝑛 of vectors in R𝑙 such that∑
𝑖∈𝐵𝑚(𝑖)v𝑖 = 0, since whenweminimize over the 𝑐𝑖 we have really only placed additional

constraints on the v𝑖 . It follows that

𝜎1(ΛL) ≥ min

v1,...,v𝑛∈R𝑙

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑

𝑖∈𝐵𝑚(𝑖)‖v𝑖 ‖2
|
∑︁
𝑖∈𝐵

𝑚(𝑖)v𝑖 = 0, {v𝑖}𝑖∈𝐵 not all 0
}
≥ 𝜎1(ΛL),

and we are done. �

In the rest of the proof of Theorem 3.1, the expressions (3.6) and (3.7) will be used to

bound 𝜎1(Λ𝐿) and 𝜎1(ΛL) from above by placing a collection of vectors v1, . . . , v𝑛 in R3

in such a way that we can simultaneously control both the numerator and denominator
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of the Rayleigh quotients in (3.6) and (3.7) while ful�lling the respective constraints of

(3.6) and (3.7) on the vectors. The elegant way in which this is done in [ST07], and which

we essentially follow, is to embed the graph 𝐺 on the unit sphere and then put v𝑖 at the
coordinate corresponding to the vertex 𝑖 in the embedded graph. If we place the vectors

in this way, we can think of the quantity

∑
𝑖∈𝐵𝑚(𝑖)v𝑖 as the ’center of mass’ of the vectors

belonging to boundary vertices, where the vector v𝑖 has ’mass’𝑚(𝑖). Analogously, we
can also think of the quantity

∑
𝑖∈𝐵 v𝑖 as the center of mass of the vectors belonging to

the boundary vertices, but with the masses of the v𝑖 all equal to 1. This lets us think of

the conditions in (3.6) and (3.7) as demanding that the center of mass of the v𝑖 should be

at the origin in R3.
By embedding𝐺 on the unit sphere and placing v𝑖 at the 𝑖:th vertex of𝐺 , the planarity

of 𝐺 will let us use the surface area of the unit sphere to bound the numerators of the

Rayleigh quotients in (3.6) and (3.7). Moreover, if none of the ”masses” of the v𝑖 are much

larger than the rest of the masses combined as we require via the condition (3.2), it should

always be possible to ”warp” the embedding of𝐺 so that the center of mass of the vectors

corresponding to boundary vertices is at the origin. We prove that this is the case in

Theorem 3.7.

The theorem that lets us bound the numerators the Rayleigh quotients in (3.6) and

(3.7) with our arrangement of the v𝑖 is the classical Koebe-Andreev-Thurston Theorem or

Circle Packing Theorem. A proof and discussion of this and related results can be found

in Chapter 13 of [Thu02].

Theorem 3.6 (Circle Packing Theorem). Let 𝐺 = (𝑉 , 𝐸) be a planar graph with vertex
set 𝑉 = {1, 2, . . . , 𝑛} and edge set 𝐸. Then there is a set of disks D = {𝐷1, . . . , 𝐷𝑛} in the
plane with disjoint interiors such that 𝐷𝑖 and 𝐷 𝑗 have a single point in common if and only
if (𝑖, 𝑗) is in 𝐸. In fact, a graph is planar if and only if there is such a set of disks.

In accordance with [ST07], we call an embedding of 𝐺 as in Theorem 3.6 a kissing
disk embedding of𝐺 in the plane and denote it byD𝐺 = {𝐷𝑖}𝑖∈𝑉 . An example of a kissing

disk embedding of the complete graph on three vertices can be found in Figure 3.1a. We

say that this embedding is univalent to emphasize that the disks have disjoint interiors

and share at most one point with each other.

The way that we embed 𝐺 on the unit sphere is to take a kissing disk embedding

D𝐺 = {𝐷𝑖}𝑖∈𝑉 of𝐺 in the plane and map it to 𝑆2 via stereographic projection. The image

of each kissing disk 𝐷𝑖 is then what Spielman and Teng call a cap, i.e. the intersection of

a half-space with the unit sphere. The boundary of each cap will then be a circle on 𝑆2.

The image of all of D𝐺 will then be a collection of caps {𝐶𝑖}𝑖∈𝑉 such that the caps 𝐶𝑖 and

𝐶 𝑗 share a single point if and only if (𝑖, 𝑗) is an edge in 𝐺 . Spielman and Teng call such

a collection of caps a kissing cap embedding of 𝐺 on the unit sphere. An example of a

kissing cap embedding of the complete graph on three vertices can be seen in Figure 3.1b.

We denote a kissing cap embedding of 𝐺 by C𝐺 = {𝐶𝑖}𝑖∈𝑉 , where 𝐶𝑖 is the cap

corresponding to the vertex 𝑖 . Since the boundary of each cap 𝐶𝑖 is a circle, we can

unambiguously de�ne the center of the cap𝐶𝑖 as the point in𝐶𝑖 equidistant to all boundary
points of 𝐶𝑖 . We denote the center of the cap 𝐶𝑖 by 𝑝 (𝐶𝑖) and denote the (Euclidean)

distance from 𝑝 (𝐶𝑖) to the boundary of 𝐶𝑖 by 𝑟𝑖 . We call 𝑟𝑖 the radius of 𝐶𝑖 .

29



CHAPTER 3. PLANAR GRAPHS WITH ’BALANCED’ BOUNDARY

1

2 3

(a) A kissing disk embedding of the graph 𝐾3 in

the plane.

32

1

(b) A kissing cap embedding of 𝐾3 on the unit

sphere.

Figure 3.1: Examples of kissing disk and kissing cap embeddings of 𝐾3.

We will show in Theorem 3.7 that with our assumptions on the boundary of 𝐺 , there

exist kissing cap embeddings C𝐺 , C′
𝐺
of 𝐺 such that∑︁

𝑖∈𝐵
𝑚(𝑖)𝑝 (𝐶𝑖) = 0,

∑︁
𝑖∈𝐵

𝑝 (𝐶′
𝑖 ) = 0, (3.10)

These kissing cap embeddings will be used to bound 𝜎1(ΛL) and 𝜎1(Λ𝐿), respectively.
Formally, the statement of Theorem 3.7 is as follows:

Theorem 3.7 (Kissing cap embedding lemma). Let 𝐺 = (𝑉 , 𝐸,𝑤) be a planar graph with
boundary 𝐵. Suppose |𝐵 | > 4. Let C𝐺 = {𝐶𝑖}𝑖∈𝑉 be a univalent kissing cap embedding of𝐺
on 𝑆2 and let 𝜇 : 𝑉 → (0,∞) be a function on 𝑉 such that

2(𝜇 (𝑖) + 𝜇 ( 𝑗)) <
∑︁
𝑘∈𝐵

𝜇 (𝑘), (3.11)

for all 𝑖, 𝑗 ∈ 𝐵 such that (𝑖, 𝑗) ∈ 𝐸 or 𝑖 = 𝑗 . Then there exists a homeomorphism 𝑓 : 𝑆2 → 𝑆2

thatmaps caps to caps, such that the univalent image kissing cap embedding𝐶 = (𝑓 (𝐶𝑖))𝑖∈𝐵
satis�es ∑︁

𝑖∈𝐵
𝜇 (𝑖)𝑝 (𝑓 (𝐶𝑖)) = 0, (3.12)

where 𝑝 (𝑓 (𝐶𝑖)) denotes the center of the cap 𝑓 (𝐶𝑖).

Remark 3.8. The existence of the kissing cap embedding C𝐺 as in (3.10) follows from

Theorem 3.7 by choosing the function 𝜇 to be the usual vertex measure 𝑚 as in (2.1).

The existence of the kissing cap embedding C′
𝐺
as in (3.10) follows from Theorem 3.7 by

choosing 𝜇 to be identically 1 for all the vertices in𝐺 , whereby the condition (3.11) always

holds if the number of boundary vertices is greater than 4.
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We postpone the proof of Theorem 3.7 to Section 3.2, since it is quite technical. If

we take Theorem 3.7 as given for the moment, we have all the tools needed to prove

Theorem 3.1.

Proof of Theorem 3.1. The case for ΛL : Recall the variational characterization (3.7) of

𝜎1(ΛL):

𝜎1(ΛL) = min

v1,...,v𝑛∈R𝑙

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑

𝑖∈𝐵𝑚(𝑖)‖v𝑖 ‖2
|
∑︁
𝑖∈𝐵

𝑚(𝑖)v𝑖 = 0, {v𝑖}𝑖∈𝐵 not all 0
}
.

We set 𝑙 = 3 in the expression (3.7). We want to bound 𝜎1(ΛL) from above by con�guring

a collection v1, . . . , v𝑛 of vectors in R3 so that

∑
𝑖∈𝐵𝑚(𝑖)v𝑖 = 0, and then input the v𝑖 into

the Rayleigh quotient

𝑅ΛL (v1, . . . , v𝑛) =
∑

(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑
𝑖∈𝐵𝑚(𝑖)‖v𝑖 ‖2

as in (3.7). If the condition (3.2) is satis�ed, Theorem 3.7 yields that there is a kissing

cap embedding C𝐺 = {𝐶𝑖}𝑖∈𝑉 of 𝐺 such that

∑
𝑖∈𝐵𝑚(𝑖)𝑝 (𝐶𝑖) = 0. Hence, if we place the

vector v𝑖 on the center 𝑝 (𝐶𝑖) of 𝐶𝑖 , the condition∑︁
𝑖∈𝐵

𝑚(𝑖)v𝑖 = 0

is satis�ed. Moreover, all of the vector lengths are 1 since they are placed on the unit

sphere. Denote the radius of the 𝑖:th cap by 𝑟𝑖 . If cap 𝑖 is adjacent to cap 𝑗 , then the

squared vector norm ‖v𝑖 − v 𝑗 ‖2 will have length at most (𝑟𝑖 + 𝑟 𝑗 )2 (see Figure 3.2).
By Young’s inequality, (𝑟𝑖 + 𝑟 𝑗 )2 ≤ 2(𝑟 2𝑖 + 𝑟 2𝑗 ). Then we can write∑︁

(𝑖, 𝑗)∈𝐸
𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2 ≤ 2max

𝑖∈𝑉
𝑚(𝑖)

𝑛∑︁
𝑖=1

𝑟 2𝑖 .

The interiors of the caps are non-overlapping since C𝐺 is a kissing cap embedding.

Moreover, it is well-known that the area of the cap 𝐶𝑖 is 𝜋𝑟
2

𝑖 . Therefore, it follows that

𝑛∑︁
𝑖=1

𝜋𝑟 2𝑖 ≤ {combined area of caps} ≤ 4𝜋,

since the area of all of 𝑆2 is 4𝜋 . With this con�guration of the v𝑖 , it follows by (3.7) in

Lemma 3.5 that

𝜎1(ΛL) ≤
∑

(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑
𝑖∈𝐵𝑚(𝑖)‖v𝑖 ‖2

≤
2max𝑖∈𝑉 𝑚(𝑖)∑𝑛

𝑖=1 𝑟
2

𝑖∑
𝑖∈𝐵𝑚(𝑖)‖v𝑖 ‖2

=
2max𝑖∈𝑉 𝑚(𝑖)∑𝑛

𝑖=1 𝑟
2

𝑖∑
𝑖∈𝐵𝑚(𝑖)

≤ 8max𝑖∈𝑉 𝑚(𝑖)
Vol𝐺 (𝐵)

,
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p(Cj)p(Ci)

0

vjvi

vi − vj

rjri

Figure 3.2: A geometric explanation of why ‖v𝑖 − v𝑗 ‖2 ≤ (𝑟𝑖 + 𝑟 𝑗 )2.

as was sought.

The case forΛ𝐿: The proof strategy is exactly the same as forΛL . Recall the variational
characterization (3.6) of 𝜎1(ΛL):

𝜎1(Λ𝐿) = min

v1,...,v𝑛∈R𝑙

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑

𝑖∈𝐵 ‖v𝑖 ‖2
|
∑︁
𝑖∈𝐵

v𝑖 = 0, {v𝑖}𝑖∈𝐵 not all 0
}
.

Here, the Rayleigh quotient is instead

𝑅Λ𝐿
(v1, . . . , v𝑛) =

∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑

𝑖∈𝐵 ‖v𝑖 ‖2
.

ByTheorem 3.7, there is a kissing cap embeddingC′
𝐺
= {𝐶′

𝑖 }𝑖∈𝑉 of𝐺 such that

∑
𝑖∈𝐵 𝑝 (𝐶′

𝑖 ) =
0. Similarly to how the case for ΛL was carried out, we place v𝑖 at 𝑝 (𝐶′

𝑖 ). Then the condi-

tion

∑
𝑖∈𝐵 v𝑖 = 0 is satis�ed, and it follows by (3.6) in Lemma 3.5 together with the same

arguments as in the case for ΛL that

𝜎1(Λ𝐿) ≤
∑

(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 ‖v𝑖 − v 𝑗 ‖2∑
𝑖∈𝐵 ‖v𝑖 ‖2

≤
2max𝑖∈𝑉 𝑚(𝑖)∑𝑛

𝑖=1 𝑟
2

𝑖∑
𝑖∈𝐵 ‖v𝑖 ‖2

=
2max𝑖∈𝑉 𝑚(𝑖)∑𝑛

𝑖=1 𝑟
2

𝑖

𝑏

≤ 8max𝑖∈𝑉 𝑚(𝑖)
𝑏

,

as we wanted. �
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3.2. Proof of Theorem 3.7

The proof of Theorem 3.7 is quite technical. Most of the work is done already by Plümer

in [Plü20] and we follow him very closely in what is to come. We introduce the following

notation: Let 𝛽 be a point on 𝑆2, and let 𝐻𝛽 denote the a�ne hyperplane in R3 tangential
to 𝑆2 at 𝛽 , i.e.

𝐻𝛽 = {𝑦 ∈ R3 | (𝑦 − 𝛽, 𝛽) = 0}.
Here, we use (·, ·) to denote the usual inner product in R3. Let 𝜋𝛽 : 𝐻𝛽 → 𝑆2 \ {−𝛽} be
stereographic projection of 𝐻𝛽 onto 𝑆

2
w.r.t. 𝛽 , i.e.

𝜋𝛽 (𝑦) =
4

‖𝛽 + 𝑦‖2 (𝛽 + 𝑦) − 𝛽.

The inverse of 𝜋𝛽 is

𝜋−1
𝛽
(𝑧) = 1

1 + (𝑧, 𝛽) (𝛽 + 𝑧) − 𝛽

where 𝑧 ∈ 𝑆2 \ {−𝛽}. The standard extension 𝜋𝛽 (∞) = −𝛽 extends stereographic

projection to a homeomorphism 𝜋𝛽 : 𝐻𝛽 ∪∞ → 𝑆2. Crucially, stereographic projection

(and its inverse) is circle-preserving in the following sense as recounted by Plümer:

1. If 𝐶 de�nes a circle in 𝐻𝛽 , then 𝜋𝛽 (𝐶) is a circle in 𝑆2.

2. If 𝑇 is a circle in 𝑆2 and −𝛽 ∉ 𝑇 , then 𝜋−1
𝛽
(𝑇 ) is a circle in 𝐻𝛽 .

3. If 𝑅 is a circle in 𝑆2 and −𝛽 ∈ 𝑅, then 𝜋−1
𝛽
(𝑅) \ ∞ is a straight line in 𝐻𝛽 .

4. If𝑈 is a straight line in 𝐻𝛽 , then 𝜋𝛽 (𝑈 ) ∪ {−𝛽} is a circle in 𝑆2.

A proof of this fact can be found in [DS32], §36. We will also need the notion of a dilation

on 𝐻𝛽 with centre 𝛽 and dilation factor 𝜆. We write this map as

𝐷𝜆
𝛽
: 𝐻𝛽 → 𝐻𝛽

𝐷𝜆
𝛽
(𝑦) = 𝛽 + 𝜆(𝑦 − 𝛽).

Dilation also extends to a homeomorphism 𝐷𝜆
𝛽
∪{∞} → 𝐷𝜆

𝛽
∪{∞} if we put 𝐷𝜆

𝛽
(∞) =

∞. Clearly, dilation maps circles to circles and straight lines to straight lines. The

procedure we will consider is to take a kissing cap embedding of𝐺 on 𝑆2, inverse project

it onto 𝐻𝛽 for some 𝛽 in 𝑆2, dilate it on 𝐻𝛽 by a factor 𝜆 ≠ 0, and �nally stereographically

project the dilated embedding onto 𝑆2 again. Mathematically, this procedure is executed

by the map

𝑔𝜆
𝛽
B 𝜋𝛽 ◦ 𝐷𝜆𝛽 ◦ 𝜋

−1
𝛽

: 𝑆2 → 𝑆2.

(The actual map we will use for the inverse projection-dilation-projection procedure can

be seen in (3.13), and is a modi�ed version of 𝑔𝜆
𝛽
in which we choose the parameters in a

speci�c way.) By the properties of stereographic projection and dilation outlined above,

the map 𝑔𝜆
𝛽
is a homeomorphism that maps circles to circles in 𝑆2. Moreover, it is not

hard to see that the map that assigns parameters to 𝑔𝜆
𝛽
, i.e.

(0,∞) × 𝑆2 × 𝑆2 → 𝑆2;

(𝜆, 𝛽, 𝑧) ↦→ 𝑔𝜆
𝛽
(𝑧),
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is continuous. Next, we extend the parameter-assigning map to another map

[0,∞) × 𝑆2 × 𝑆2 → 𝑆2;

(𝜆, 𝛽, 𝑧) ↦→ 𝑔𝜆
𝛽
(𝑧)

by designating the limit map 𝑔0
𝛽
: 𝑆2 → 𝑆2 as

𝑔0
𝛽
(𝑧) =

{
−𝛽, 𝑧 = −𝛽
𝛽, otherwise

noting that this extension yields continuity of 𝑔𝜆
𝛽
on the relatively open subset ( [0,∞) ×

𝑆2 × 𝑆2) \ (0, 𝛽,−𝛽). From this one can immediately deduce the following lemma by the

de�nition of continuity:

Lemma 3.9. Let 𝐾, 𝐿 ⊂ 𝑆2 be compact and such that 𝑧 ≠ −𝛽 for all points of the form
(𝛽, 𝑧) in 𝐾 × 𝐿. Let 𝜀 > 0. Then there exists some 𝛿 = 𝛿 (𝜀) in the interval (0, 1) such that

‖𝑔𝜆
𝛽
(𝑧) − 𝛽 ‖ < 𝜀,

for all (𝜆, 𝛽, 𝑧) in [0, 𝛿] × 𝐾 × 𝐿.

Noting that 𝑔𝜆
𝛽
is circle-preserving, we see that if 𝐶 is a cap in 𝑆2, then so is 𝑔𝜆

𝛽
(𝐶),

so we can unambigously speak about the center 𝑝 (𝑔𝜆
𝛽
(𝐶)) of the cap 𝑔𝜆

𝛽
(𝐶). By Lemma

3.9 applied to the set 𝐶 × {𝛽} it follows that 𝑝 (𝑔𝜆
𝛽
(𝐶)) → 𝛽 as 𝜆 → 0 for all 𝛽 ∈ 𝑆2 with

−𝛽 ∉ 𝐶 . This motivates the extension

𝑝 (𝑔0
𝛽
(𝐶)) B

{
𝛽, if 𝛽 is not in 𝐶,

−𝛽, otherwise.

This extension yields continuity of the map [0,∞) × 𝑆2 → 𝑆2; (𝜆, 𝛽) ↦→ 𝑝 (𝑔𝜆
𝛽
(𝐶)) on the

set ( [0,∞ × 𝑆2) \ ({0} × −𝐶). Now take a point 𝛼 in the closed unit ball 𝐵3 in R3, and
de�ne

𝑓𝛼 B

{
𝑔
1−‖𝛼 ‖
𝛼/‖𝛼 ‖, if 𝛼 ≠ 0,

The identity map Id𝑆2, if 𝛼 = 0.
(3.13)

By our previous digression on𝑔𝜆𝛼 , it follows that the map 𝑅𝐶 : 𝛼 ↦→ 𝑝 (𝑓𝛼 (𝐶)) is continuous
on 𝐵3 \ {−𝐶}. Moreover, if 𝛼 lies on 𝑆2 we have

𝑝 (𝑓𝛼 (𝐶)) =
{
𝛼, if 𝛼 is not in 𝐶

−𝛼, otherwise.
(3.14)

The map 𝑓𝛼 is the projection-dilation-projection homeomomorphism that we will use

to con�gure the centers of the caps so that their center of mass is situated at the origin;

more formally, we want to �nd some 𝛼 in 𝐵3 such that the map Φ : 𝐵3 → R3, where

Φ(𝛼) B
∑︁
𝑖∈𝐵

𝜇 (𝑖)𝑝 (𝑓𝛼 (𝐶𝑖)), (3.15)

evaluates to 0. We will not explicitly construct such a point 𝛼 ; rather, we will prove that

must exist using the following easy corollary of Brouwer’s �xed point theorem:
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Lemma 3.10. Let 𝜌 : 𝐵3 → R3 be a continuous map, and assume that for any 𝛼 ∈ 𝑆2, the
image 𝜌 (𝛼) lies on the ray initiated at the origin and passing through 𝛼 . Then there exists
some 𝛾 ∈ 𝐵3 such that 𝜌 (𝛾) = 0.

Proof. If there is no such 𝛾 , the map − 𝜌

‖𝜌 ‖ : 𝐵
3 → 𝐵3 is a well-de�ned, continuous map,

but this map has no �xed points; every point in 𝐵3 is mapped to a point on 𝑆2, and the

image 𝜌 (𝛼) of every point 𝛼 ∈ 𝑆2 lies on the ray from the origin to 𝛼 and is therefore

mapped to −𝛼 ≠ 𝛼 by the map 𝜌/‖𝜌 ‖. This contradicts Brouwer’s �xed point theorem,

which states precisely that every continous map 𝐵3 → 𝐵3 has a �xed point. �

The �nal technical frontier which prevents us from simply applying Lemma 3.10 to

(3.15) (which is easily seen to ful�ll the ray condition by the univalence of the kissing cap

embedding𝐶 = {𝑓𝛼 (𝐶𝑖)}𝑖∈𝑉 together with the condition (3.11)) is that our map Φ is in fact

discontinous on −𝐶𝑖 for each 𝑖 in 𝐵. The way out of this predicament is a �nal technical

lemma which will let us apply a ’smoothing’ transitioning process to 𝑓𝛼 , when 𝛼 (which

we recall is a point in 𝐵3) is close to one the caps𝐶𝑖 . This is Lemma 3.8 in [Plü20], and its

rather short proof is omitted here since it is not especially illuminating.

Lemma 3.11. De�ne the system

𝑉𝐶 =

{
𝑈 ⊂ 𝑉 :

⋂
𝑖∈𝑈

𝐶𝑖 ≠ 0

}
.

(By univalence, 𝑉𝐶 consists of one-element subsets of𝑉 and two-element subsets {𝑖, 𝑗} ⊂ 𝑉
with 𝐶𝑖 ∩ 𝐶 𝑗 ≠ 0). Let 𝜀 be in the interval (0, 1). Let 𝐵𝜀 (𝛾) ⊂ R3 denote the open ball of
radius 𝜀 with center 𝛾 . Let 𝑉 1

𝛼 (𝜀) denote the set {𝑖 ∈ 𝑉 : 𝑓𝛼 (𝐶𝑖) ⊂ 𝐵𝜀 (𝛼/‖𝛼 ‖)}, i.e. the set
of vertices in𝑉 whose corresponding caps are contained in the open ball of radius 𝜀 around
the point 𝛼/‖𝛼 ‖. Let 𝑉 2

𝛼 (𝜀) denote the set 𝑉 \𝑉 1

𝛼 (𝜀). Then there is some 𝛿 = 𝛿 (𝜀) in (0, 1)
such that for any 𝛼 in 𝐵3 with 1−𝛿 < ‖𝛼 ‖ < 1 we have that (𝑉 \𝑉 1

𝛼 (𝜀)) is contained in𝑉𝐶 .

Proof of Theorem 3.7. Let C𝐺 = {𝐶𝑖}𝑖∈𝑉 be a kissing cap embedding of 𝐺 . Suppose (3.11)

is ful�lled by the measure 𝜇 : 𝑉 → R de�ned on𝑉 . Let 𝜀 be in (0, 1), and choose 𝛿 = 𝛿 (𝜀)
in (0, 1) so that the result of Lemma 3.11 holds. Let 𝛼 be a point in 𝐵3. De�ne a maximum

distance function

dist(𝛼,𝐶𝑖) B max

𝑧∈𝐶𝑖
‖𝛼 − 𝑧‖,

De�ne a continuous function ℎ𝑖 : 𝐵
3 → [0, 1] by

ℎ𝑖 (𝛼) =
{
2−dist(𝛼,𝐶𝑖 )

𝛿
, if dist(𝛼,𝐶𝑖) ≥ 2 − 𝛿,

1, otherwise.

The triangle inequality implies that

dist(𝛼,𝐶𝑖) ≤ 1 + ‖𝛼 ‖, (3.16)

for any nonzero 𝛼 , and equality holds in (3.16) if and only if the point −𝛼/‖𝛼 ‖ is in 𝐶𝑖 .
Hence ℎ𝑖 (𝛼) evaluates to 0 if and only if the point −𝛼 is in 𝐶𝑖 , and it follows that ℎ𝑖
vanishes on the discontinous points of the map 𝑅𝐶𝑖 : 𝛼 ↦→ 𝑝 (𝑓𝛼 (𝐶𝑖)), which are precisely

the points in −𝐶𝑖 as we remarked earlier. Hence we can ’smoothen’ the maps 𝑅𝐶𝑖 by
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instead de�ning 𝑅′
𝐶𝑖

: 𝛼 ↦→ ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖)). The map 𝑅′
𝐶𝑖
then de�nes a continuous map

on 𝐵3 for any 𝑖 ∈ 𝑉 . Then the map

Φ(𝛼) =
∑︁
𝑖∈𝐵

𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))

is a sum of continuous functions and hence also continuous. Moreover it follows by (3.14)

that if 𝛼 is a point on 𝑆2, the map Φ evaluates to

Φ(𝛼) =
∑︁

𝑖∈𝐵,−𝛼∉𝐶𝑖
𝜇 (𝑖)ℎ𝑖 (𝛼)𝛼

which is on the ray starting at 0 and intersecting 𝛼 . By Lemma 3.10 we conclude that

there is some 𝛼 in 𝐵3 such that

0 = Φ(𝛼) =
∑︁
𝑖∈𝐵

𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖)) .

Now we just need to show that this 𝛼 can be chosen to satisfy ‖𝛼 ‖ ≤ 1 − 𝛿 (𝜀) for 𝜀
su�ciently small. This will yield

dist(𝛼,𝐶𝑖) ≤ 1 + ‖𝛼 ‖ < 2 − 𝛿, for all 𝑖 𝐵, (3.17)

making all of the ℎ𝑖 belonging to vertices 𝑖 in 𝐵 evaluate to 1 and yielding

0 =
∑︁
𝑖∈𝐵

𝜇 (𝑖)𝑝 (𝑓𝛼 (𝐶𝑖)),

which is our desired result.

Suppose for the sake of contradiction that 1 − 𝛿 < ‖𝛼 ‖ < 1 holds. We recall some

de�nitions from Lemma 3.11. We de�ned

𝑉𝐶 =

{
𝑈 ⊂ 𝑉 :

⋂
𝑖∈𝑈

𝐶𝑖 ≠ 0

}
and remarked that each subset contained in 𝑉𝐶 consists of at most two vertices in 𝑉 .

Moreover, we de�ned𝑉 1

𝛼 (𝜀) as the set {𝑖 ∈ 𝑉 : 𝑓𝛼 (𝐶𝑖) ⊂ 𝐵𝜀 (𝛼/‖𝛼 ‖)}, i.e. the set of vertices
in𝑉 whose corresponding caps are contained in the open ball of radius 𝜀 around the point

𝛼/‖𝛼 ‖. Lemma 3.11 then implies that for our choice of 𝛼 , the set 𝑉 2

𝛼 (𝜀) = (𝑉 \𝑉 1

𝛼 (𝜀)) is
contained in 𝑉𝐶 , and thus consists of at most two vertices in 𝑉 .

By de�nition, we have that dist(𝛼, 𝑓𝛼 (𝐶𝑖)) ≤ dist(𝛼, 𝑓𝛼 (𝐶 𝑗 )) if 𝑖 is in 𝑉 1

𝛼 (𝜀) and 𝑗 is in
𝑉 2

𝛼 (𝜀). This actually implies that dist(𝛼,𝐶𝑖) ≤ dist(𝛼,𝐶 𝑗 ), since 𝑓𝛼 is just a dilation on

the hyperplane tangential to 𝑆2 at 𝛼/‖𝛼 ‖, and therefore ℎ𝑖 (𝛼) ≥ ℎ 𝑗 (𝛼) if 𝑖 is in𝑉 1

𝛼 (𝜀) and
𝑗 is in𝑉 2

𝛼 (𝜀). We de�ne 𝐷𝛼 as min𝑣∈𝑉 1

𝛼 (𝜀) ℎ𝑖 (𝛼). Note that 𝐷𝛼 > 0, since none of the ℎ𝑖 (𝛼)
are 0 if ‖𝛼 ‖ < 1 by virtue of the inequality (3.16), and we assumed that 1 − 𝛿 < ‖𝛼 ‖ < 1.

Then, if 𝑖 is in 𝑉 1

𝛼 (𝜀) and 𝑗 is in 𝑉 2

𝛼 (𝜀) we get

ℎ𝑖 (𝛼) ≥ 𝐷𝛼 ≥ ℎ 𝑗 (𝛼).

By de�nition, we have for 𝑖 in 𝑉 1

𝛼 (𝜀) that



 𝛼

‖𝛼 ‖ − 𝑝 (𝑓𝛼 (𝐶𝑖))




 ≤ 𝜀.
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We write 𝑉 1

𝛼 (𝜀) as 𝑉 1

𝛼 and 𝑉 2

𝛼 (𝜀) as 𝑉 2

𝛼 in the calculations to come. At this point, it is

convenient to also intruduce the following notation: For a subset𝑊 of 𝑉 , we write

𝜇 (𝑊 ) =
∑
𝑖∈𝑊 𝜇 (𝑖). We now have the results and notation needed for estimating the

norm of Φ(𝛼). We do this by splitting the norm of Φ(𝛼) into two terms as

‖Φ(𝛼)‖ =





∑︁
𝑖∈𝐵

𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))







=







 ∑︁
𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖)) +

∑︁
𝑖∈𝑉 2

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))








≥







 ∑︁
𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))







 −






 ∑︁
𝑖∈𝑉 2

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))







 .
To start with, we have




 ∑︁

𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))







=







 ∑︁
𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)

𝛼

‖𝛼 ‖ −
∑︁

𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)

(
𝛼

‖𝛼 ‖ − 𝑝 (𝑓𝛼 (𝐶𝑖))
)







≥







 ∑︁
𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)

𝛼

‖𝛼 ‖







 −






 ∑︁
𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)

(
𝛼

‖𝛼 ‖ − 𝑝 (𝑓𝛼 (𝐶𝑖))
)







=
∑︁

𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼) −







 ∑︁
𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)

(
𝛼

‖𝛼 ‖ − 𝑝 (𝑓𝛼 (𝐶𝑖))
)







≥ (1 − 𝜀)
∑︁

𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)

≥ 𝐷𝛼 (1 − 𝜀)
∑︁

𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)

= 𝐷𝛼 (1 − 𝜀)𝜇 (𝑉 1

𝛼 ∩ 𝐵).

Simultaneously,





 ∑︁
𝑖∈𝑉 2

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑣 ))







 ≤ 𝐷𝛼

∑︁
𝑖∈𝑉 2

𝛼∩𝐵
𝜇 (𝑖) = 𝐷𝛼𝜇 (𝑉 2

𝛼 ∩ 𝐵).
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With these results, we can estimate the norm of Φ(𝛼) as

‖Φ(𝛼)‖ =





∑︁
𝑖∈𝐵

𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))







=







 ∑︁
𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖)) +

∑︁
𝑖∈𝑉 2

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))








≥







 ∑︁
𝑖∈𝑉 1

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))







 −






 ∑︁
𝑖∈𝑉 2

𝛼∩𝐵
𝜇 (𝑖)ℎ𝑖 (𝛼)𝑝 (𝑓𝛼 (𝐶𝑖))








≥ 𝐷𝛼 ((1 − 𝜀)𝜇 (𝑉 1

𝛼 ∩ 𝐵) − 𝜇 (𝑉 2

𝛼 ∩ 𝐵))
≥ 𝐷𝛼 (𝜇 (𝐵) − 2𝜇 (𝑉 2

𝛼 ∩ 𝐵) − 𝜀𝜇 (𝐵)) .

(3.18)

We now choose 𝜀, which we only assumed was contained in (0, 1), to be

𝜀 B min

𝑈 ∈𝑉𝐶

𝜇 (𝐵) − 2𝜇 (𝑈 ∩ 𝐵)
2𝜇 (𝐵) > 0,

where we know that 𝜀 > 0 by the condition (3.11). Since 𝑉 2

𝛼 is contained in 𝑉𝐶 , it follows

by combining the estimate (3.18) with our choice of 𝜀 that

‖Φ(𝛼)‖ ≥ 𝐷𝛼𝜀𝜇 (𝐵)
2

> 0,

but this contradicts that Φ(𝛼) = 0. Therefore, ‖𝛼 ‖ ≤ 1 − 𝛿 , whence Theorem 3.7 follows

from the remarks surrounding (3.17).

�
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Chapter 4

The DtN map and edge connectivity

A natural measure of the connectivity of a graph is its edge connectivity. The edge

connectivity is most commonly de�ned on graphs where one thinks of all edges as having

weight 1. We call such a graph 𝐺 = (𝑉 , 𝐸) a combinatorial graph in this chapter. For

combinatorial graphs, the edge connectivity is de�ned as follows.

De�nition 4.1. Let𝐺 = (𝑉 , 𝐸) be a connected combinatorial graph. The edge connectivity
𝜂 of 𝐺 is the minimal number of edges required to be removed to disconnect the graph.

It seems reasonable to expect a relation between the edge connectivity of a graph𝐺 and

the spectral gap of the various Laplacians that can be associated to a graph, considering

the close links between Laplacian spectral gaps and other measures of connectivity such

as the Cheeger constant. Indeed, in Theorem 2.3 in [Ber+17], stated as Theorem 4.2 below,

the authors achieve precisely this. They provide a variational proof and generalization of

a result originally due to Fiedler (cf. [Fie73]) :

Theorem 4.2. Let 𝐺 = (𝑉 , 𝐸) be a �nite, connected combinatorial graph with 𝑛 vertices,
edge connectivity 𝜂, and combinatorial Laplacian 𝐿. Then the spectral gap 𝜆1(𝐿) of 𝐿 satis-
�es

𝜂 + 1 ≥ 𝜆1(𝐿) ≥ 2𝜂

[
1 − cos

(𝜋
𝑛

)]
. (4.1)

The proof of Theorem 4.2 uses the variational characterization (2.21) of 𝜆1(𝐿). We can

use the variational characterization (2.23) of the spectral gap 𝜎1(Λ𝐿) of the combinatorial

DtN map Λ𝐿 of𝐺 to adapt the technique employed to prove the lower bound in (4.1) to

prove a similar lower bound for 𝜎1(Λ𝐿). This lower bound is the result we will prove in

Theorem 4.5.

As we have seen, in the context of DtN maps it is considerably more natural to study

weighted graphs. Hence, we would like to consider some kind of weighted version of

edge connectivity. We de�ne it as the following quantity:

De�nition 4.3 (Weighted edge connectivity). Let 𝐺 = (𝑉 , 𝐸,𝑤) be a �nite, connected
weighted graph. The weighted edge connectivity of𝐺 is the minimal amount of total edge

weight that needs to be removed to disconnect the graph.

Remark 4.4. If the weights on the edges of 𝐺 in De�nition 4.3 are all equal to 1, the

weighted edge connectivity of 𝐺 coincides with its usual edge connectivity.

With these de�nitions and remarks in hand, we are ready to prove Theorem 4.5.
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Theorem 4.5. Let𝐺 = (𝑉 , 𝐸,𝑤), be a connected weighted graph with boundary 𝐵. Denote
the number of vertices in 𝐺 by 𝑛 and the number of boundary vertices in 𝐺 by 𝑏. Suppose
𝑏 > 1, and suppose𝐺 has weighted edge connectivity 𝜈 . Then the spectral gap 𝜎1(Λ𝐿) of the
combinatorial DtN map Λ𝐿 of 𝐺 w.r.t. 𝐵 satis�es

𝜎1(Λ𝐿) ≥
2𝜈

𝑛 − 𝑏 + 1

[
1 − cos

(𝜋
𝑏

)]
. (4.2)

Example 4.6. The example of the path graph 𝑃𝑛 with edge weights all equal to 1 and

with the end vertices designated as boundary vertices is one case where the bound (4.2)

is tight. Let 𝜎1 denote the spectral gap of the combinatorial DtN map of 𝑃𝑛 . As remarked

by Perrin in the end of the proof of Theorem 1 in [Per19], it is not hard to see that

𝜎1 = 2/(𝑛 − 1). Meanwhile, the weighted edge connectivity of 𝑃𝑛 is 1 and the number of

boundary vertices is 2, so the bound (4.2) yields 𝜎1 ≥ 2/(𝑛 − 1). This matches Perrin’s

bound in Theorem 1 in [Per19], which is also optimal for the unit weighted path graph.

Example 4.7. For the star graph 𝑆𝑛 on 𝑛 vertices with unit edge weights and with the

measure 1 vertices designated as boundary vertices as in Example 2.13, the bound (4.2)

is asymptotically signi�cantly worse than Perrin’s bound in Theorem 1 in [Per19], as

𝑛 approaches in�nity. From Example 2.13, we can use the well-known result that the

spectral gap of the combinatorial Laplacian of a complete graph on 𝑏 vertices is 𝑏 − 1

to conclude that the spectral gap 𝜎1 of the combinatorial DtN map of the star graph as

above is

𝜎1(𝑆𝑛) =
𝑛 − 2

𝑛 − 1

∼ 1, for large 𝑛.

Meanwhile, Theorem 1 in [Per19] estimates

𝜎1(𝑆𝑛) ≥
𝑛 − 1

2(𝑛 − 2)2 ∼ 1

2𝑛
, for large 𝑛,

and (4.2) estimates

𝜎1(𝑆𝑛) ≥ 1 − cos

( 𝜋

𝑛 − 1

)
∼ 𝜋2

2𝑛2
, for large 𝑛.

Remark 4.8. If the boundary of 𝐺 consists of all of 𝑉 , the combinatorial DtN map on

𝐺 is just the combinatorial Laplacian on 𝐺 . Hence, if we in addition set all of the edge

weights in 𝐺 to 1, the bound (4.2) specializes to the previously known lower bound in

Theorem 4.2.

Remark 4.9. The method we use in the proof of Theorem 4.5 can not be used to prove

analogous results for the normalized DtN map - at least not directly. This is due to the fact

that a large portion of the proof of Theorem 4.5 consists of changing the edge weights

of 𝐺 and the other graphs that appear in suitable ways, while still maintaining control

over the Rayleigh quotient that appears in the variational characterization of 𝜎1(Λ𝐿)
in (2.23). This is possible since the edge weights of the graph in question only appear

in the numerator of the Rayleigh quotient in (2.23). The situation is di�erent in the

corresponding variational characterization of the spectral gap of the normalized DtN map

as found in (2.24). There, the edge weights of the graph in question appear in both the

numerator and denominator of the Rayleigh quotient, as well as in the condition on which

set of functions we minimize the Rayleigh quotient over. This makes it more di�cult in

the case of the normalized DtN map to retain control over the Rayleigh quotient while

modifying the graph one is working with.
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Proof of Theorem 4.5.

Step 1: Bound the spectral gap of Λ𝐿 from below via the Rayleigh quotient of a path
graph.

Recall the variational characterization of the spectral gap of the combinatorial DtN

map Λ𝐿 of 𝐺 as in (2.23):

𝜎1(Λ𝐿) = min

𝑓 ∈R𝑛
𝑓 |𝐵≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑

𝑖∈𝐵 𝑓 (𝑖)2
|
∑︁
𝑖∈𝐵

𝑓 (𝑖) = 0

}
.

As can be seen in the proof of Corollary 2.23 which in turn yields (2.23), the expression

(2.23) is equivalent to

𝜎1(Λ𝐿) = min

𝑓 ∈R𝑏
𝑓 ≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑢 𝑓 (𝑖) − 𝑢 𝑓 ( 𝑗))2∑

𝑖∈𝐵 𝑓 (𝑖)2
|
∑︁
𝑖∈𝐵

𝑓 (𝑖) = 0

}
, (4.3)

where 𝑢 𝑓 is the harmonic extension of 𝑓 to all of 𝑉 as in De�nition 2.9. We designate the

Rayleigh quotient associated to (2.23) as

𝑅𝐺 (𝑓 ) =
∑

(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑
𝑖∈𝐵 𝑓 (𝑖)

. (4.4)

Let 𝑓 0 be a function in R𝑏 such that

∑
𝑖∈𝐵 𝑓

0(𝑖) = 0 and such that the harmonic extension

𝑢 𝑓 0 of 𝑓
0
minimizes (4.4), i.e.

𝑅𝐺 (𝑢 𝑓 0) = 𝜎1(Λ𝐿).
We put a labelling {𝑣𝑖}𝑛𝑖=1 on the vertices in 𝐺 by designating

𝑢 𝑓 0 (𝑣1) ≤ 𝑢 𝑓 0 (𝑣2) ≤ . . . ≤ 𝑢 𝑓 0 (𝑣𝑛). (4.5)

With this labelling, we write the weight of the edge (𝑣𝑖, 𝑣 𝑗 ) as𝑤𝑣𝑖 ,𝑣 𝑗 . By Lemma 2.10, the

harmonic function 𝑢 𝑓 0 takes its exremal values on the boundary 𝐵, so we can assume that

𝑣1 and 𝑣𝑛 are boundary vertices. The proof idea is now the same as in [Ber+17]; we want

to replace edges between the vertices labelled as 𝑣𝑖 and 𝑣 𝑗 repsectively with a sequence of

edges between (𝑣𝑖, 𝑣𝑖+1), (𝑣𝑖+1, 𝑣𝑖+2), . . . , (𝑣 𝑗−1, 𝑣 𝑗 ). If there is already an edge between two

vertices in the sequence, we add the weight of the edge (𝑣𝑖, 𝑣 𝑗 ) to that edge. We illustrate

an example of this procedure in Figure 4.1.

The weighted edge connectivity 𝜈 of 𝐺 does not decrease when we perform the

procedure in the previous paragraph on 𝐺 , since whenever we remove an edge (𝑣𝑖, 𝑣 𝑗 )
with weight𝑤𝑣𝑖 ,𝑣 𝑗 , we add the weight𝑤𝑣𝑖 ,𝑣 𝑗 to the edges in the sequence

𝐶 = (𝑣𝑖, 𝑣𝑖+1), (𝑣𝑖+1, 𝑣𝑖+2), . . . , (𝑣 𝑗−1, 𝑣 𝑗 ).

Therefore, if the edge (𝑣𝑖, 𝑣 𝑗 ) was one of the edges in a set 𝑆 of edges that disconnects 𝐺

when removed, and whose total edge weight is 𝜈 , two cases arise:

1. If none of the edges in 𝐶 were in 𝑆 before we performed the procedure in the

preceding paragraph, then at least one of them needs to replace (𝑣𝑖, 𝑣 𝑗 ) in 𝑆 to

disconnect 𝐺 after the procedure, in which case the sum of the edge weights of the

edges in 𝑆 is at least 𝜈 .
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v1 v2 v3 v4 vn−1 vn

v1 v2 v3 v4 vn−1 vn

wv1,vn

wv2,v3 wv3,v4 wvn−1,vn

wv1,vn wv1,vn
wv1,vn wv1,vn wv1,vn

wv2,v3 wv3,v4 wvn−1,vn

Figure 4.1: An example of the graph altering procedure employed in [Ber+17]; the edge (𝑣1, 𝑣𝑛)
with edge weight𝑤𝑣1,𝑣𝑛 is replaced by a sequence of edges (𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑛−1, 𝑣𝑛), all with

edge weight𝑤𝑣1,𝑣𝑛 . This �gure was inspired by Figure 1 in [Ber+17].

2. If one or more of the edges in 𝐶 were in 𝑆 before we performed the procedure, the

edge 𝑤𝑣𝑖 ,𝑣 𝑗 is added to the weight of that edge, so the sum of the edge weights of

the edges in 𝑆 after we perform the procedure is at least 𝜈 .

We denote the graph that is formed by performing this procedure on all edges in𝐺 by

𝐺 , and designate the boundary of 𝐺 to be the set of vertices corresponding to boundary

vertices in𝐺 For this reason, we denote the boundary of𝐺 by 𝐵 as well. With this choice

of boundary, we have that

∑
𝑖∈𝐵 𝑓

0(𝑖) = 0 in 𝐺 , and we can associate a Rayleigh quotient

to 𝐺 which we denote 𝑅
𝐺
. We now proceed to show that 𝑅

𝐺
(𝑢 𝑓 0) ≤ 𝑅𝐺 (𝑢 𝑓 0).

For easier reading in the paragraph to come, we de�ne

𝑤𝑣𝑖 ,𝑣 𝑗 (𝑢 𝑓 0 (𝑣𝑖) − 𝑢 𝑓 0 (𝑣 𝑗 ))2 B 𝑆 (𝑣𝑖, 𝑣 𝑗 ), 𝑤𝑣𝑖 ,𝑣 𝑗

𝑗−1∑︁
𝑙=1

(
𝑢 𝑓 0 (𝑣𝑙+1) − 𝑢 𝑓 0 (𝑣𝑙 )

)
2

B 𝑇 (𝑣𝑖, 𝑣 𝑗 ).

The numerator in 𝑅𝐺 (𝑢 𝑓 0) consists of a sum of terms of the form 𝑆 (𝑣𝑖, 𝑣 𝑗 ), summing over

each pair 𝑣𝑖, 𝑣 𝑗 such that (𝑣𝑖, 𝑣 𝑗 ) is an edge in 𝐸. The e�ect of the procedure outlined in

the previous paragraph on the numerator in 𝑅𝐺 (𝑢 𝑓 0) is that each term 𝑆 (𝑣𝑖, 𝑣 𝑗 ) in the

numerator of 𝑅𝐺 (𝑢 𝑓 0) is replaced by the corresponding term 𝑇 (𝑣𝑖, 𝑣 𝑗 ). Therefore, the
numerator in 𝑅

𝐺
(𝑢 𝑓 0) consists of a sum of terms of the form 𝑇 (𝑣𝑖, 𝑣 𝑗 ), summing over

each pair 𝑣𝑖, 𝑣 𝑗 such that (𝑣𝑖, 𝑣 𝑗 ) is an edge in our original graph 𝐺 . Hence, to show that

𝑅𝐺 (𝑢 𝑓 0) ≤ 𝑅
𝐺
(𝑢 𝑓 0) amounts to showing that𝑇 (𝑣𝑖, 𝑣 𝑗 ) ≤ 𝑆 (𝑣𝑖, 𝑣 𝑗 ) for each pair (𝑣𝑖, 𝑣 𝑗 ) that
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constitutes an edge in 𝐺 . In more explicit terms, we want to prove that

𝑗−1∑︁
𝑙=𝑖

(
𝑢 𝑓 0 (𝑣𝑙+1) − 𝑢 𝑓 0 (𝑣𝑙 )

)
2

≤
(
𝑢 𝑓 0 (𝑣 𝑗 ) − 𝑢 𝑓 0 (𝑣𝑖)

)
2

, (4.6)

whenever (𝑣𝑖, 𝑣 𝑗 ) is an edge in𝐺 . It is immediate by Jensen’s inequality that ‖𝑥 ‖2 ≤ ‖𝑥 ‖1
if 𝑥 is a �nite-dimensional vector. Put

𝑥 B (𝑢 𝑓 0 (𝑣𝑖+1) − 𝑢 𝑓 0 (𝑣𝑖), . . . , 𝑢 𝑓 0 (𝑣 𝑗 ) − 𝑢 𝑓 0 (𝑣 𝑗−1)) ∈ R 𝑗−𝑖 . (4.7)

We then have [
𝑗−1∑︁
𝑙=𝑖

|𝑢 𝑓 0 (𝑣𝑙+1) − 𝑢 𝑓 0 (𝑣𝑙 ) |2
] 1/2

≤
𝑗−1∑︁
𝑙=𝑖

|𝑢 𝑓 0 (𝑣𝑙+1) − 𝑢 𝑓 0 (𝑣𝑙 ) |

=

𝑗−1∑︁
𝑙=𝑖

(𝑢 𝑓 0 (𝑣𝑙+1) − 𝑢 𝑓 0 (𝑣𝑙 ))

= 𝑢 𝑓 0 (𝑣 𝑗 ) − 𝑢 𝑓 0 (𝑣𝑖),

which is what we wanted. The next step is to note that the graph 𝐺 formed by applying

the procedure outlined above to 𝐺 is in fact a path graph on 𝑛 vertices (see Figure 4.2)

whose end vertices are 𝑣1 and 𝑣𝑛 .

1 2 3 4 n− 1 n

Figure 4.2: The path graph on 𝑛 vertices.

Moreover, we can note that the weighted edge connectivity of a path graph is precisely

the minimum among the edge weights in the graph. Since the weighted edge connectivity

does not decrease when we form𝐺 from𝐺 , it follows that the minimum among the edge

weights of 𝐺 is at least 𝜈 . Now we can subtract weight from each of the edges in 𝐺 so

that all edge weights are equal to 𝜈 , which only decreases the Rayleigh quotient 𝑅
𝐺
(𝑢 𝑓 0).

After subtracting weight so that all edge weights are equal to 𝜈 , we are left with a path

graph on 𝑛 vertices whose edge weights are all equal to 𝜈 and whose boundary vertices

are the vertices in the boundary of 𝐺 . We denote this graph by 𝑃 . As we remarked, the

Rayleigh quotient 𝑅𝑃 associated to 𝑃 ful�lls 𝑅𝑃 (𝑓 0) ≤ 𝑅
𝐺
(𝑓 0).

For clarity, we now introduce the notation 𝜎1(𝐺) to denote the spectral gap of the

combinatorial DtN map of 𝐺 , and analogous notation for the spectral gaps of the combi-

natorial DtN maps of other graphs that we consider. Collecting our partial results, we so

far have the chain of inequalities

𝜎1(𝑃) ≤ 𝑅𝑃
(
𝑓 0
)
≤ 𝑅

𝐺

(
𝑓 0
)
≤ 𝑅𝐺

(
𝑓 0
)
= 𝜎1(𝐺). (4.8)
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Step 2: Get rid of the boundary dependence in 𝜎1(𝑃).
As we remarked earlier, we know that the end vertices of 𝑃 are boundary vertices,

but which other vertices are boundary vertices will depend on the original graph 𝐺 as

well as the choice of 𝑓 0. Therefore, to get a generally applicable result out of (4.8), we

need to �nd a quantity which bounds 𝜎1(𝑃) from below regardless of which non-end

vertices in 𝑃 are boundary vertices.

Enumerate the vertices of 𝑃 as in Figure 4.2. We identify the boundary of 𝑃 with that

of 𝐺 and therefore write 𝐵 for the boundary of 𝑃 . The Rayleigh quotient of 𝑃 = (𝑉𝑃 , 𝐸𝑃 )
is then

𝑅𝑃 (𝑔) =
∑

(𝑖, 𝑗)∈𝐸𝑃 𝑤𝑖 𝑗 (𝑔(𝑖) − 𝑔( 𝑗))2∑
𝑖∈𝐵 𝑔(𝑖)2

=
𝜈
∑𝑛−1
𝑖=1 (𝑔(𝑖) − 𝑔(𝑖 + 1))2∑

𝑖∈𝐵 𝑔(𝑖)2
,

and by the variational characterization (2.23), 𝜎1(𝑃) is the minimum of 𝑅𝑃 (𝑔) among

functions 𝑔 in R𝑛 such that

∑
𝑖∈𝐵 𝑔(𝑖) = 0. Let 𝑔0 ∈ R𝑛 be such a minimizer, so that

𝑅𝑃 (𝑔0) = 𝜎1(𝑃). Denote the indices of the boundary vertices of 𝑃 by 𝑘 𝑗 , for 𝑗 = 1, 2, . . . , 𝑏.

Note that 𝑘1 = 1 and 𝑘𝑏 = 𝑛, since the end vertices of 𝑃 are boundary vertices. Then the

Rayleigh quotient 𝑅𝑃 (𝑔0) can be written as

𝑅𝑃 (𝑔0) =
𝜈
∑𝑛
𝑖=1

(
𝑔0(𝑖) − 𝑔0(𝑖 + 1)

)
2∑

𝑖∈𝐵 𝑔0(𝑖)2
=
𝜈
∑𝑏−1
𝑗=1

∑𝑘 𝑗+1−1
𝑖=𝑘 𝑗

(
𝑔0(𝑖) − 𝑔0(𝑖 + 1)

)
2∑

𝑖∈𝐵 𝑔0(𝑖)2
. (4.9)

In the numerator of the right-hand side of (4.9), we have split the sum in the numerator

of 𝑅𝑃 (𝑔0) into partial sums with indices from 𝑘 𝑗 to 𝑘 𝑗+1 − 1, where 𝑗 ranges from 1 to 𝑏.

We now study these partial sums. De�ne the vector 𝐴( 𝑗) as

𝐴( 𝑗) =


𝑔0(𝑘 𝑗 ) − 𝑔0(𝑘 𝑗 + 1)

𝑔0(𝑘 𝑗 + 1) − 𝑔0(𝑘 𝑗 + 2)
...

𝑔0(𝑘 𝑗+1 − 1) − 𝑔0(𝑘 𝑗+1)


,

and de�ne 𝐵( 𝑗) as 𝐵( 𝑗) = ∑𝑘 𝑗+1−1
𝑖=𝑘 𝑗

(
𝑔0(𝑖) − 𝑔0(𝑖 + 1)

)
2

. Let 1 denote the all-ones vector of
length 𝑘 𝑗+1 − 𝑘 𝑗 . Let (·, ·) denote the usual inner product in R𝑛 . Then

(𝐴( 𝑗), 1) = 𝑔0(𝑘 𝑗 ) − 𝑔0(𝑘 𝑗+1).

By the Cauchy-Schwarz inequality,

(𝑔0(𝑘 𝑗 ) − 𝑔0(𝑘 𝑗+1))2 = | (𝐴( 𝑗), 1) |2 ≤ (𝐴( 𝑗), 𝐴( 𝑗)) (1, 1) = 𝐵( 𝑗) (𝑘 𝑗+1 − 𝑘 𝑗 ). (4.10)

Now we can use (4.10) to bound 𝑅𝑃 (𝑔0) from below:

𝑅𝑃 (𝑔0) =
𝜈
∑𝑏−1
𝑗=1

∑𝑘 𝑗+1−1
𝑖=𝑘 𝑗

(
𝑔0(𝑖) − 𝑔0(𝑖 + 1)

)
2∑

𝑖∈𝐵 𝑔0(𝑖)2

=
𝜈
∑𝑏−1
𝑗=1 𝐵( 𝑗)∑

𝑖∈𝐵 𝑔0(𝑖)2

≥
𝜈
∑𝑏−1
𝑗=1

1

𝑘 𝑗+1−𝑘 𝑗 (𝑔
0(𝑘 𝑗 ) − 𝑔0(𝑘 𝑗+1))2∑

𝑖∈𝐵 𝑔0(𝑖)2
.

(4.11)
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The last expression in (4.11) only enumerates over the boundary vertices of 𝑃 . Now

we recall the variational characterization (2.21) of the spectral gap of the combinatorial

Laplacian 𝐿 of a graph with 𝑙 vertices (we write 𝑙 instead of 𝑛 as in (2.21) since 𝑛 denotes

the number of vertices of 𝐺 here):

𝜆1(𝐿) = min

𝑓 ∈R𝑙
𝑓 ≠0

{∑
(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑𝑙

𝑖=1 𝑓 (𝑖)2
|

𝑙∑︁
𝑖=1

𝑓 (𝑖) = 0

}
.

The Rayleigh quotient associated to (2.21) is

𝑅′(𝑓 ) =
∑

(𝑖, 𝑗)∈𝐸𝑤𝑖 𝑗 (𝑓 (𝑖) − 𝑓 ( 𝑗))2∑𝑙
𝑖=1 𝑓 (𝑖)2

.

We recognize the last expression in (4.11) as the Rayleigh quotient associated to the

combinatorial Laplacian of a path graph 𝑄 on 𝑏 vertices, where the weight between the

vertices 𝑖 and 𝑖 + 1 is 𝜈/(𝑘𝑖+1 − 𝑘𝑖). The largest possible value of the quantity (𝑘𝑖+1 − 𝑘𝑖)
for any 𝑖 is 𝑛 − 𝑏 + 1, which is attained if the boundary vertices of 𝑃 are arranged as

in Figure 4.3. Hence, if we de�ne 𝑈 as the path graph on 𝑏 vertices with edge weights

1 2 3 n− b+ 1 n− b+ 2 n− 1 n

Figure 4.3: The con�guration of the boundary of 𝑃 which maximizes (𝑘𝑖+1 − 𝑘𝑖). The 𝑛 − 𝑏
interior vertices are blue and the 𝑏 boundary vertices are yellow.

all equal to 𝜈/(𝑛 − 𝑏 + 1), we have that 𝑅′
𝑈
(𝑔0 |𝐵) ≤ 𝑅′

𝑄
(𝑔0 |𝐵), and by (2.21) it follows

that 𝜆1(𝑈 ) ≤ 𝑅′
𝑈
(𝑔0 |𝐵). The spectral gap of the combinatorial Laplacian on the path

graph on 𝑏 vertices and unit weights on the edges is well-known to be 2

[
1 − cos

(
𝜋
𝑏

) ]
,

see e.g. Section 6.6 in [Spi19]. Therefore, since all of the edge weights in 𝑈 are equal to

𝜈/(𝑛 − 𝑏 + 1), it follows that

𝜆1(𝑈 ) = 2𝜈

𝑛 − 𝑏 + 1

[
1 − cos

(𝜋
𝑏

)]
.

If we summarize our results, we have

2𝜈

𝑛 − 𝑏 + 1

[
1 − cos

(𝜋
𝑏

)]
= 𝜆1(𝑈 ) ≤ 𝑅′𝑈 (𝑔0 |𝐵) ≤ 𝑅′𝑄 (𝑔0 |𝐵) ≤ 𝑅𝑃 (𝑔0) = 𝜎1(𝑃). (4.12)

If we combine (4.12) and (4.8), we get

𝜎1(𝐺) ≥
2𝜈

𝑛 − 𝑏 + 1

[
1 − cos

(𝜋
𝑏

)]
,

as was sought.

�
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Chapter 5

Possible future directions

5.1. Higher genus graphs

A natural further direction to consider, suggested by the bound (3.3), is to study more

generally how the genus 𝑔 of a graph, i.e. the minimal genus of a surface on which

the graph can be embedded without any edges crossing, a�ects the spectral gaps of the

combinatorial and normalized DtN maps. Similar results have already been achieved

in the case of the spectral gap of the Laplacian, for instance by Kelner [Kel04] who

generalized the method of Spielman and Teng [ST07] to graphs of genus 𝑔, and by Amini

and Cohen-Steiner [AC18], who managed to link bounds on the spectral gap of the

Laplacian of a graph to that of a carefully constructed Riemannian manifold, so that

bounds in the Riemannian manifold case can be applied to the graph case as well. There

is also previous work done by Colbois, Girouard and Raveendran [CGR18] which relates

the Steklov problem on a Riemannian manifold and a graph, respectively. There seems to

be considerable potential in applying (a suitable reformulation of) the methods of Kelner,

Amini and Cohen-Steiner to the Steklov problem and to further study the links between

the continuous and discrete Steklov problems.

5.2. Circular planar networks

Noting that the combinatorial DtN map is a Laplacian (see Section 2.6), a natural question

investigated at length by Curtis, Ingerman and Morrow in [CIM98] is which Laplacians

actually arise as the combinatorial DtN maps of graphs with special properties. More

speci�cally, Curtis, Morrow and Ingerman, building on work by Colin de Verdière [Col94]

and Colin de Verdière, Gitler, and Vertigan [CGV96] respectively, determine an if and

only if condition for a combinatorial Laplacian to be the combinatorial DtN map of a

circular planar network (CPN), i.e. a planar graph embedded on the disk with boundary

vertices on the circle boundary. This property is called circular minor positivity and is

not necessary to further describe here. The class of graphs with this property has been

extensively studied, for instance by Kenyon [Ken11] and Kenyon and Wilson [KW17], and

there have been attempts to explicitly reconstruct the CPN from its combinatorial DtN

map. The formulas for this reconstruction in [Ken11] and [KW17] unfortunately evade

the author’s understanding. However, in the right hands they might lead to new bounds

on the spectral gap of the Laplacian of graphs 𝐺 ful�lling circular minor positivity in

conjunction with the bound (3.3), if one is able to reconstruct the necessary properties of

the CPN whose combinatorial DtN map is the Laplacian of 𝐺 , since the spectral gap of

the DtN map of the CPN is then the spectral gap of the Laplacian of 𝐺 .
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11

2

3

4

Figure 5.1: An example of a CPN on 4 vertices, with vertices 2, 3, and 4 designated as boundary

vertices.

5.3. Semidefinite programming methods

The proof technique and general approach used in the proof of Theorem 3.1 as pioneered

by Spielman and Teng [ST07] are seemingly inspired by techniques used in semide�nite

programming relaxations in theoretical computer science, cf. for example the classical

approximation algorithm forMax − Cut by Goemans andWilliamson [GW95]. In general,

using semide�nite programming-inspired approaches for constructing test functions

for the variational expressions for the spectral gaps of the various Laplacians and DtN

matrices associated to a graph seems to be both a powerful and underutilized tool, and in

that regard a possibly interesting future area of study.
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Appendix A

Proof of Theorem 2.16

In all of this section, we order the eigenvalues of an 𝑛 × 𝑛 matrix 𝐴 as 𝜆0(𝐴) ≤ 𝜆1(𝐴) ≤
. . . ≤ 𝜆𝑛−1(𝐴). The road to Theorem 2.16 is a bit long and starts with the following

theorem, which is Theorem 2.1 in [Zha05].

Theorem A.1 (Schur complement interlacing formula). Let 𝐴 be an 𝑛 × 𝑛 Hermitian
matrix with entries in C, partitioned as

𝐴 =

[
𝑃 𝐵

𝐵∗ 𝐷

]
, (A.1)

where 𝑃 is an 𝑟 × 𝑟 principal, invertible, positive semide�nite submatrix. Let 𝑆𝐴 (𝑃) denote
the Schur complement of 𝐴 w.r.t. 𝑃 , and let 0 ⊕ 𝑆𝐴 (𝑃) be the 𝑛 × 𝑛 matrix

0 ⊕ 𝑆𝐴 (𝑃) =
[
0 0

0 𝑆𝐴 (𝑃)

]
.

Then
𝜆𝑖 (𝐴) ≤ 𝜆𝑖+𝑟 (0 ⊕ 𝑆𝐴 (𝑃)) ≤ 𝜆𝑖+𝑟 (𝐴), 𝑖 = 0, . . . , (𝑛 − 𝑟 ) − 1.

We need a lemma to prove this theorem.

Lemma A.2. Let 𝐻,𝐴, 𝐵 be 𝑛 × 𝑛 Hermitian matrices with entries in C, and suppose 𝐻 =

𝐴 + 𝐵. Then
𝜆𝑖 (𝐻 ) ≤ 𝜆𝑖+𝑘 (𝐴) + 𝜆𝑛−𝑘−1(𝐵),

for 𝑘 = 1, . . . , (𝑛 − 𝑖) − 1, and

𝜆𝑖 (𝐻 ) ≥ 𝜆𝑖 (𝐴) + 𝜆0(𝐵).

Proof. Omitted. The reader is referred to a discussion of this and related results in [Ful98],

cf. also Equation 2.0.9 in [Zha05]. �

Proof of Theorem A.1. We can expand the block matrix formula (A.1) of 𝐴 as

𝐴 =

[
𝑃 𝐵

𝐵∗ 𝐷

]
=

[
𝑃 𝐵

𝐵∗ 𝐵∗𝑃−1𝐵

]
+
[
0 0

0 𝑆𝐴 (𝑃)

]
B 𝐸 + 𝐹 .

Let 𝐼𝑟 and 𝐼𝑛−𝑟 denote the 𝑟 × 𝑟 and (𝑛 − 𝑟 ) × (𝑛 − 𝑟 ) identity matrices, respectively. Then

we de�ne a matrix 𝑄 as

𝑄 =

[
𝐼𝑟 0

−𝐵∗𝑃−1 𝐼𝑛−𝑟

]
.
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APPENDIX A. PROOF OF THEOREM 2.16

With these de�nitions of the matrices 𝑄 and 𝐸, the product 𝑄𝐸𝑄∗
turns out to be the

𝑛 × 𝑛 matrix whose 𝑟 × 𝑟 principal submatrix in the �rst 𝑟 rows and columns consists

of 𝑃 , and with all other entries equal to 0. We denote this matrix by 𝑃 ⊕ 0. Since 𝑃 is

positive semide�nite by assumption, so is 𝑃 ⊕ 0 and hence also 𝐸, since 𝐸 is similar to

𝑃 ⊕ 0 by virtue of the equation 𝑄𝐸𝑄∗ = 𝑃 ⊕ 0, where 𝑄∗ = 𝑄−1
. Moreover we have

rank(𝐸) = rank(𝑃) = 𝑟 < 𝑛.

Now we use Lemma A.2 to deduce that

𝜆𝑖 (𝐴) = 𝜆𝑖 (𝐹 + 𝐸) ≤ 𝜆𝑖+𝑟 (𝐹 ) + 𝜆𝑛−𝑟−1(𝐸) = 𝜆𝑖+𝑟 (𝐹 ),

where the last equality follows since rank(𝐸) = 𝑟 < 𝑛. (Since we also know that 𝐸

is singular and positive semide�nite, we get that necessarily 𝜆𝑛−𝑟−1(𝐸) = 0.) Another

application of Lemma A.2 yields

𝜆𝑖 (𝐴) = 𝜆𝑖 (𝐹 + 𝐸) ≥ 𝜆𝑖 (𝐹 ) + 𝜆0(𝐸) = 𝜆𝑖 (𝐹 ),

since by the same reasoning we must have that 𝜆0(𝐸) = 0. Noting that 𝐹 = 0 ⊕ 𝑆𝐴 (𝑃), we
conclude that indeed

𝜆𝑖 (𝐴) ≤ 𝜆𝑖+𝑟 (0 ⊕ 𝑆𝐴 (𝑃)) ≤ 𝜆𝑖+𝑟 (𝐴), 𝑖 = 0, 1, . . . , (𝑛 − 𝑟 ) − 1.

�

A corollary which follows from Theorem A.1 will give us Theorem 2.16.

Corollary A.3. Let 𝐴 be an 𝑛 × 𝑛 Hermitian, positive semide�nite matrix with entries in
C, partitioned as

𝐴 =

[
𝑃 𝐵

𝐵∗ 𝐷

]
,

where 𝑃 is an 𝑟 × 𝑟 principal, invertible, positive semide�nite submatrix. Let 𝑆𝐴 (𝑃) denote
the Schur complement of 𝐴 w.r.t. 𝑃 . Then

𝜆𝑖 (𝐴) ≤ 𝜆𝑖 (𝑆𝐴 (𝑃)) ≤ 𝜆𝑖+𝑟 (𝐴), 𝑖 = 0, . . . , (𝑛 − 𝑟 ) − 1.

We need one more lemma to prove this corollary.

Lemma A.4 (Haynsworth additivity formula). Let 𝐴 be an 𝑛 × 𝑛 Hermitian matrix,
partitioned as in (A.1), with 𝑃 an 𝑟 × 𝑟 principal submatrix. De�ne the inertia of 𝐴 as the
ordered triple

In(𝐴) B (𝑝 (𝐴), 𝑞(𝐴), 𝑧 (𝐴)) (A.2)

where 𝑝, 𝑞, 𝑧 is the number of positive, negative, and zero eigenvalues of 𝐴, respectively.
Then

In(𝐴) = In(𝑃) + In(𝑆𝐴 (𝑃)) . (A.3)

Proof. Omitted for brevity. For a proof, see Theorem 1.6 in [Zha05]. �

Proof of Corollary A.3. If𝐴 is positive semide�nite, so is 𝑃 . By the Haynsworth additivity

formula, it is then immediate that 𝑆𝐴 (𝑃) is also positive semide�nite. Then it follows that

𝜆𝑖+𝑟 (0 ⊕ 𝑆𝐴 (𝑃)) = 𝜆𝑖 (𝑆𝐴 (𝑃)) for 𝑖 = 0, 1, . . . , 𝑛 − 𝑟 − 1, and hence Theorem A.1 implies that

𝜆𝑖 (𝐴) ≤ 𝜆𝑖 (𝑆𝐴 (𝑃)) ≤ 𝜆𝑖+𝑟 (𝐴), 𝑖 = 0, . . . , (𝑛 − 𝑟 ) − 1.

�

49



APPENDIX A. PROOF OF THEOREM 2.16

Using Corollary A.3 we can �nally associate the eigenvalues of the DtN matrix to its

Laplacian matrix.

Theorem 2.16 (DtN Interlacing Theorem). Let𝐺 be a graph with𝑛 vertices, combinatorial
Laplacian 𝐿 and boundary 𝐵 with |𝐵 | = 𝑏. Let Λ𝐿 be the combinatorial DtN matrix of
𝐺 w.r.t 𝐵. Order the eigenvalues of 𝐿 and Λ𝐿 as 𝜆0(𝐿) ≤ 𝜆1(𝐿) ≤ . . . ≤ 𝜆𝑛−1(𝐿) and
𝜎0(Λ𝐿) ≤ 𝜎1(Λ𝐿) ≤ . . . ≤ 𝜎𝑏−1(Λ𝐿), respectively. Then

𝜆𝑖 (𝐿) ≤ 𝜎𝑖 (Λ𝐿) ≤ 𝜆𝑖+𝑛−𝑏 (𝐿), 𝑖 = 0, 1, 2, . . . , 𝑏 − 1. (2.18)

Proof. Partition 𝐿 in block form as

𝐿 =

[
𝐿̂ 𝐵

𝐵𝑡 𝐷

]
(A.4)

where 𝐷 corresponds to the boundary vertices and 𝐿̂ to the interior vertices. It is well-

known that 𝐿 is positive-semide�nite. By Theorem 2.17, 𝐿̂ as in (A.4) is invertible and

by the Schur complement formula (2.13), Λ𝐿 is the Schur complement of 𝐿 w.r.t 𝐿̂. By

Corollary A.3 it follows immediately that

𝜆𝑖 (𝐿) ≤ 𝜎𝑖 (Λ𝐿) ≤ 𝜆𝑖+𝑛−𝑏 (𝐿), 𝑖 = 0, 1, . . . , 𝑏 − 1. (A.5)

�
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